DOI QR코드

DOI QR Code

Potential Changes in the Distribution of Seven Agricultural Indicator Plant Species in Response to Climate Change at Agroecosystem in South Korea

농업생태계 기후변화 지표식물 7종의 분포 특성과 기후변화에 따른 영향 예측

  • 남형규 (농촌진흥청 국립농업과학원) ;
  • 송영주 (농촌진흥청 국립농업과학원) ;
  • 권순익 (농촌진흥청 국립농업과학원) ;
  • 어진우 (농촌진흥청 국립농업과학원) ;
  • 김명현 (농촌진흥청 국립농업과학원)
  • Received : 2018.05.08
  • Accepted : 2018.08.28
  • Published : 2018.09.30

Abstract

This study was carried out to predict the current and future potential distribution and to identify the factors affecting potential distribution of 7 plants(Lamium amplexicaule L., Trigonotis peduncularis(Trevir.) Benth. ex Hemsl, Capsella bursa-pastoris (L.) L. W. Medicus, Taraxacum officinale Weber, Veronica persica Poir., Conyza sumatrensis E. Walker, Hypochaeris radicata L.) selected as indicators for climate change in agricultural ecosystem. We collected presence/absence data of 7 indicator plants at 108 sites in South Korea and applied the Maxent model. According to future climate scenario, the distribution area of C. bursa-pastoris(L.) L. W. Medicus, T. officinale Weber, and V. persica Poir. was expected to be reduced, but the distribution range was to be maintained. The distribution areas and range of the C. sumatrensis E. Walker and H. radicata L. were expected to be increased. The distribution area and range of T. peduncularis (Trevir.) Benth. Ex Hemsl. and L. amplexicalue L. were rapidly decreased. Non-climatic factors such as land cover and altitude were the most important environmental variable for T. officinale Weber, C. bursa-pastoris(L.) L.W.Medicus, V. persica Poir., T. peduncularis (Trevir.) Benth. Ex Hemsl., and L. amplexicalue L.. Climatic factors were the most important environmental variable for C. sumatrensis E. Walker and H. radicata L.. It is expected that the future potential distribution of 7 indicator plants response to climate change will be used to monitor and to establish the management plan.

본 연구는 농업생태계 기후변화 지표식물의 현재와 미래의 분포 특성을 예측하고 분포에 영향을 미치는 요인을 파악하고자 수행되었다. 전국을 대상으로 총 108개 지점에서 지표식물 7종(광대나물, 꽃마리, 냉이, 서양민들레, 큰개불알풀, 큰망초, 서양금혼초)의 실제 분포 유무 자료를 수집하고 Maxent 모형을 적용하여 현재와 기후시나리오에 따른 미래의 잠재적 분포를 예측하였다. 기후변화에 따른 미래 분포 예측에서 냉이, 서양민들레, 큰개불알풀 3종은 전체 분포 면적은 감소하였지만 분포 범위는 그대로 유지되는 것으로 예측되었고, 큰망초와 서양금혼초 2종은 분포면적과 범위가 모두 확대되는 것으로 예측되었다. 광대나 물과 꽃마리 2종은 분포 면적이 급격히 줄어들어 국지적으로 분포하거나 일부 해안가에만 나타나는 것으로 예측되었다. 광대나물, 꽃마리, 냉이, 서양민들레, 큰개불알풀의 경우 토지피복도나 고도와 같은 비기후인자가 상대적으로 중요한 것으로 나타났고 큰망초와 서양금혼초는 기후인자가 중요한 것으로 확인되었다. 이와 같은 기후변화 지표식물의 분포 예측 특성은 향후 지표식물의 모니터링 방향과 관리 계획 설정에 활용될 것으로 기대된다.

Keywords

References

  1. Ahn, K.H., Y.H. You and K.T. Cho. 2016. Growth response to light, moisture and nutrients for the conservation measures of Bupleurum latissimum (Apoaceae, endangered species) under future climate environment (elevated $CO_2$ concentration and temperature). Korean Journal of Environment and Ecology 30(5): 803-809. https://doi.org/10.13047/KJEE.2016.30.5.803
  2. Alderman, R. and A.J. Hobday. 2017. Developing a climate adaptation strategy for vulnerable seabirds based on prioritization of intervention options. Deep-Sea Research Part II 140: 290-297. https://doi.org/10.1016/j.dsr2.2016.07.003
  3. Altieri, M.A. 1999. The ecological role of biodiversity in agroecosystems. Agriculture Ecosystem and Environment 74:19-31. https://doi.org/10.1016/S0167-8809(99)00028-6
  4. Bakkenes, M., J.R.M. Alkemade, F. Ihle, R. Leemans and J.B. Latour. 2002. Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Global Change Biology 8: 390-407. https://doi.org/10.1046/j.1354-1013.2001.00467.x
  5. Balezentiene, L. 2011. Alpha-diversity of differently managed agro-ecosystems assessed at a habitat scale. Polish Journal of Environmental Studies 20(6): 1387-1394.
  6. Buytaert, W., F. Cuesta-Camacho and C. Tobon. 2011. Potential impacts of climate change on the environmental services of humid tropical alpine regions. Global Ecology and Biogeography 20(1): 19-33. https://doi.org/10.1111/j.1466-8238.2010.00585.x
  7. Calanca, P. 2007. Climate change and drought occurrence in the Alpine region: How severe are becoming the extremes?. Global and Planetary Change 57(1-2): 151-160. https://doi.org/10.1016/j.gloplacha.2006.11.001
  8. Cho, K.J., Y.J. Oh, K.K. Kang, M.S. Han, Y.E. Na, M. Kim, L.J. Choe and M.H. Kim. 2013. Occurrence and distribution of C4 Plants under diverse agricultural field types in Korea. Korean Journal of Agricultural and Forest Meteorology 15(2): 85-101. https://doi.org/10.5532/KJAFM.2013.15.2.085
  9. Chung, U., K.S. Cho and B.W. Lee. 2006. Evaluation of sitespecific potential for rice production in Korea under the changing climate. Korean Journal of Agricultural and Forest Meteorology 8(4): 229-241.
  10. Davis, M.B. and R.G. Shaw. 2001. Range shifts and adaptive responses to Quaternary climate change. Science 292(5517):673-679. https://doi.org/10.1126/science.292.5517.673
  11. Dyer, J.M. 1995. Assessment of climatic warming using a model of forest species migration. Ecological Modelling 79: 199-219. https://doi.org/10.1016/0304-3800(94)00038-J
  12. Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Frahani, S. Kadner, K. Seyboth, K. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx. 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fitfth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, USA.
  13. Elith, J. 2000. Quantitative methods for modeling species habitat: Comparative performance and an application to Australian plants, p. 39-58. In: Quantitative Methods for Conservation Biology (Ferson, S. and M. Burgman eds.). Springer, New York, USA.
  14. Ford, E.B. 1945. Butterflies. London: Collins.
  15. Gottfried, M., H. Pauli and G. Grabherr. 1998. Prediction of vegetation patterns at the limits of plant life: A new view of the alpine-nival ecotone. Arctic and Alpine Research 30(3):207-221. https://doi.org/10.2307/1551968
  16. Grabherr, G., M. Gottfried and H. Pauli. 1994. Climate effects on mountain plants. Nature 369: 448.
  17. Grime, J.P. 1993. Vegetation functional classification system as approaches to predicting and quantifying global vegetation change, p. 293-305. In: Vegetation Dynamics Modelling and Global Change (Shugart, H.H. and A.M. Solomon eds.). Chapman and Hall, London.
  18. Harris, G. 1964. Climatic changes since 1860 affecting European birds. Weather 19(3): 70-79. https://doi.org/10.1002/j.1477-8696.1964.tb02074.x
  19. Hernandez, P.A., C.H. Graham, L.L. Master and D.L. Albert. 2006. The effect of sample size and species characteristics on performance of different species distribution modelling methods. Ecography 29(5): 773-385. https://doi.org/10.1111/j.0906-7590.2006.04700.x
  20. Hijman, R.J., J. van Etten, J. Cheng, M. Mattiuzzi, M. Summer, J.A. Greenberg, O.P. Lamigueiro, A. Bevan, E.B. Racine, A. Shortridge and A. Ghosh. 2017. The raster Package: Geographic data analysis and modeling, version 2.6-7.
  21. Hijman, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25(15): 1965-1978. https://doi.org/10.1002/joc.1276
  22. Hijmans, R.J., S. Phillips, J. Leathwick and J. Elith. 2017. The dismo Package: Species distribution modeling, version 1.1-4.
  23. Hong, M.J., W.S. Lee and J.C. Yoo. 2015. Effects of weather change, human disturbance and interspecific competition on life-history and migration of wintering Red-crowned cranes. Korean Journal of Environment and Ecology 29(5):681-692. https://doi.org/10.13047/KJEE.2015.29.5.681
  24. Hughes, L. 2000. Biological consequences of global warming: is the signal already apparent?. Trends in Ecology and Evolution 15(2): 56-61. https://doi.org/10.1016/S0169-5347(99)01764-4
  25. Huntley, B. 1999. Species distribution and environmental change: considerations from the site to the landscape scale, p. 115-130. In: Ecosystem Management: Questions for Science and Society (Maltby, E., M. Holdgate, M. Acremand and A. Weir eds.). Royal Holloway Institute for Environmental Research, Virginia Water, UK.
  26. Hwang, J.H., H.J. Kim and S.W. Lee. 2012. Specialization strategy for regional agriculture based on the relationship between development on specialized crops and impact of climate change - focused on orchard crop -. Korean Society of Rural Planning 18(3): 149-164. https://doi.org/10.7851/ksrp.2012.18.3.149
  27. Jo, H.K. and T.W. Ahn. 2008. Differences in phenological phases of plants subsequent to microclimate change. Korean Journal of Environment and Ecology 22(3): 221-229.
  28. Jung, T.J., H.C. Shin, Y.K. Shin and M.J. Kim. 2013. Correlations between spatial distribution of alien plants and land cover. Journal of Environmental Impact Assessment 22(5):455-466. https://doi.org/10.14249/eia.2013.22.5.455
  29. Kalela, O. 1949. Changes in geographic ranges in the avifauna of northern and central Europe in response to recent changes in climate. Bird-Banding 20: 77-103. https://doi.org/10.2307/4510088
  30. KEI. 2014. Prospect for Climate Environment Risk and National Strategy. Korea Environment Institute, Sejong, Republic of Korea.
  31. Kelly, A.E. and M.L. Goulden. 2008. Rapid shifts in plant distribution with recent climate change. Preceedings of the National Academy of Sciences 105(33): 11823-11826.
  32. Kim, C.S., J.S. Lee, J.Y. Ko, E.S. Yun, U.S. Yeo, J.H. Lee, D.Y. Kwak, M.S. Shin and B.G. Oh. 2007. Evaluation of optimum rice heading period under recent climatic change in Yeongnam area. Korean Journal of Agricultural and Forest Meteorology 9(1): 17-28. https://doi.org/10.5532/KJAFM.2007.9.1.017
  33. Kim, H.J., J.K. Hong, S.C. Kim, S.H. Oh and J.H. Kim. 2011. Plant phenology of threatened species for climate change in sub-alpine zone of Korea: Especially on the summit area of Mt. Deogyusan. Korean Journal of Plant Resources 24(5): 549-556. https://doi.org/10.7732/kjpr.2011.24.5.549
  34. Kim, S.J., S.M. Kim and S.M. Kim. 2013. A study on development of vulnerability assessment criteria for agricultural infrastructure according to climate change. Journal of Agriculture & Life Science 47(1): 205-213.
  35. Kim, Y.J. and K.S. Ki. 2018. Temporal changes of Hyalessa fuscata songs by climate change. Korean Journal of Environment and Ecology 32(2): 244-251. https://doi.org/10.13047/KJEE.2018.32.2.244
  36. Kwak, T.S., J.H. Ki, Y.E. Kim, H.M. Jeon and S.J. Kim. 2008. A study of GIS prediction model of domestic fruit cultivation location changes by the global warming. Journal of Korea Spatial Information Society 10(3): 93-106.
  37. Larcher, W. 1983. Physiological Plant Ecology. 2nd ed. Springer-Verlag, New York, USA.
  38. Lee, C.K., J. Kim, J. Shon, W.H. Yang, Y.H. Yoon, K.J. Choi and K.S. Kim. 2012. Impacts of climate change on rice production and adaptation method in Korea as evaluated by simulation study. Korean Journal of Agricultural and Forest Meteorology 14(4): 207-221. https://doi.org/10.5532/KJAFM.2012.14.4.207
  39. Lee, D.B., K.M. Kim, J.H. Kim, K.A. Pho and G.Y. Kim. 2010. Impacts of arable land conversion on the vulnerability of water resource. Climate Change Research 1(1): 75-83.
  40. Lee, D.K., J.U. Kim and C. Park. 2010. A prediction of forest vegetation based on land cover change in 2090. Journal of Environmental Impact Assessment 19(2): 117-125.
  41. Lee, S.H., I.H. Heo, K.M. Lee, S.Y. Kim, Y.S. Lee and W.T. Kwon. 2008. Impacts of climate change on phenology and growth of crops: In the case of Naju. Journal of the Korean Geographical Society 43(1): 20-35.
  42. Lee, S.J. and Y.H. Ahn. 2013. Change prediction for vegetation structure, species diversity and life-form of evergreen broad-leaved forest by climate change in Gageo-Do Island, Korea. Journal of Environmental Science International 22(8): 979-997. https://doi.org/10.5322/JESI.2013.22.8.979
  43. Mawdsley, J.R., R. O’Malley and D.S. Ojima. 2009. A review of Climate Change Adaptation Strategies for wildlife management and biodiversity conservation. Conservation Biology 23(5): 1080-1089. https://doi.org/10.1111/j.1523-1739.2009.01264.x
  44. McCarty, J.P. 2001. Ecological consequences of recent climate change. Conservation Biology 15(2): 320-331. https://doi.org/10.1046/j.1523-1739.2001.015002320.x
  45. Nam, Y.S., S.R. Yang, Y.H. Song and H.J. Park. 2012. Research on the change of milled rice production under climate change in Korea: based on RCP 8.5. The Korean Agricultural Economics Association 53: 61-88.
  46. NAAS. 2017. Development of Climate Change Indicator Species in Agroecosystem. National Institute of Agricultural Science, Wanju, Republic of Korea.
  47. Noble, I.R., S. Huq, Y.A. Anokhin, J. Carmin, D. Goudou, F.P. Lansigan, B. Osman-Elasha and A. Villamizar. 2014. Adaptation needs and options. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) (Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea and L.L. White eds.). Cambridge University Press, New York.
  48. Oh, Y.J., M.H. Kim, Y.E. Na, S.H. Hong, W.K. Paik and S.T. Yoon. 2012. Vulnerability assessment of soil loss in farm area to climate change adaption. Korean Journal of Soil Science and Fertilizer 45(5): 711-716. https://doi.org/10.7745/KJSSF.2012.45.5.711
  49. Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology Evolution and Systematics 37: 637-669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
  50. Parmesan, C. and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918): 37-42. https://doi.org/10.1038/nature01286
  51. Pauli, H., M. Gottfried and G. Grabherr. 1996. Effects of climate change on mountain ecosystems - upward shifting of alpine plants. World Resource Review 8: 3.
  52. Pearson, R.G., C.J. Raxworthy, M. Nakamura and A.T. Peterson. 2007. Predicting species distributions from small number of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34(1): 102-117. https://doi.org/10.1111/j.1365-2699.2006.01594.x
  53. Phillips, S.J., M. DudíK and R.E. Schapire. 2017. Maxent software for modeling species niches and distributions (Version 3.4.1). http://biodiversityinformatics.amnh.org/open_source/maxent/ [Accessed on 2018-03-08].
  54. R Development Core Team. 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org. accessed 26 March 2018.
  55. Reich, P.B. and J. Oleksyn. 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America 101(30): 11001-11006.
  56. Root, T.L., J.T. Price, R.H. K.R. Hall, S.H. Schneider, C. Rosenzweig and L.A. Pounds. 2003. Fingerprints of global warming on wild animal and plants. Nature 421(6918): 57-60. https://doi.org/10.1038/nature01333
  57. Rosenzweig, C., D. Karoly, M. Vicarelli, P. Neofotis, Q. Wu, G. Casassa, A. Menzel, T.L. Root, N. Estrella, B. Seguin, P. Tryjanowski, C. Liu, S. Rawlins and A. Imeson. 2008. Attributing physical and biological impacts to anthropogenic climate change. Nature 453(7193): 353-357. https://doi.org/10.1038/nature06937
  58. Sakai, A. and C.J. Weiser. 1973. Freezing resistance of trees in North America with reference to tree regions. Ecology 54(1): 118-126. https://doi.org/10.2307/1934380
  59. Samie, A., X. Deng, S. Jia and D. Chen. 2017. Scenario-based simulation on dynamics of land-use-land-cover change in Punjab Province, Pakistan. Sustainability 9(8): 1285. https://doi.org/10.3390/su9081285
  60. Shim, K.M., S.H. Min, D.B. Lee, G.Y. Kim, H.C. Jeong, S.B. Lee and K.K. Kang. 2011. Simulation of the effects of the A1B climate change scenario on the potential yield of winter naked barley in Korea. Korean Journal of Agricultural and Forest Meteorology 13(4): 192-203. https://doi.org/10.5532/KJAFM.2011.13.4.192
  61. Shin, K.M., G.Y. Kim, K.A. Roh, H.C. Jeong and D.B. Lee. 2008. Evaluation of agro-climatic indices under climate change. Korean Journal of Agricultural and Forest Meteorology 10(4): 113-120. https://doi.org/10.5532/KJAFM.2008.10.4.113
  62. Solomon, A.M. and W.P. Cramer. 1993. Biospheric implications of global environmental change, p. 25-52. In: Vegetation Dynamics Modelling and Global Change (Solomon, A.M. and H.H. Shuqart eds.). Chapman and Hall, New York, USA.
  63. Sparks, T.H. and A. Menzel. 2002. Observed changes in the seasons: an overview. International Journal on Climatology 22(14): 1715-1725. https://doi.org/10.1002/joc.821
  64. Swenson, N.G. and B.J. Enquist. 2007. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. American Journal of Botany 94(3): 451-459. https://doi.org/10.3732/ajb.94.3.451
  65. Thuiller, W., S. Lavorel, G. Midgley, S. Lavergne and T. Rebelo. 2004. Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron Taxa. Ecology 85(6): 1688-1699. https://doi.org/10.1890/03-0148
  66. Turner, B.L. 1994. Local faces, global flows: the role of land use and land cover in global environmental change. Land Degradation & Development 5(2): 71-78. https://doi.org/10.1002/ldr.3400050204
  67. Walther, G.R., E. Post, P. Convey, A. Menze, C. Parmesan, T.J.C. Beebee, J.M. Fromentin, O. Joegh-Guldberg and F. Bairlein. 2002. Ecological responses to recent climate change. Nature 416(6879): 389-395. https://doi.org/10.1038/416389a
  68. Weber, E. and D. Gut. 2005. A survey of weeds that are increasingly spreading in Europe. Agronomy for Sustainable Development 25(1): 109-121. https://doi.org/10.1051/agro:2004061
  69. Webster, M.S., M.A. Colton, E.S. Darling, J. Armstrong, M.L. Pinsky, N. Knowlton and D.E. Schindler. 2017. Who should pick the winners of climate change?. Trends in Ecology & Evolution 32(3): 167-173. https://doi.org/10.1016/j.tree.2016.12.007
  70. Wipf, S., V. Stoeckli and P. Bebi. 2009. Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Climatic Change 94(1-2): 105-121. https://doi.org/10.1007/s10584-009-9546-x
  71. Wisz, M.S., R.J. Hijimans, J. Li, A.T. Peterson, C.H. Graham, A. Guisan and NCEAS Predicting Species Distributions Working Group. 2008. Effects of sample size on the performance of species distribution models. Diversity and Distributions 14(5): 763-773. https://doi.org/10.1111/j.1472-4642.2008.00482.x
  72. Woodward, F.I. 1987. Climate and Plant Distribution. Cambridge University Press, Cambridge.
  73. Woodward, F.I. and L. Rocherfort. 1991. Sensitivity analysis of vegetation diversity to environmental change. Global Ecology and Biogeography Letters 1: 7-23. https://doi.org/10.2307/2997540
  74. Yeo, I.H., H.J. Bae and S.B. Hong. 2017. A study on categorizing ecosystem groups for climate change risk assessment. Journal of Environmental Impact Assessment 26(6): 385-403. https://doi.org/10.14249/EIA.2017.26.6.385
  75. Yun, J.H., J.H. Kim, K.H. Oh and B.Y. Lee. 2011. Distributional change and climate condition of warm-temperate evergreen broad-leaved trees in Korea. Korean Journal of Environment and Ecology 25(1): 47-56.