• Title/Summary/Keyword: 기화 가스

Search Result 140, Processing Time 0.032 seconds

The Exhaust Gas Reduction of Diesel Engine by MDO (Marine Diesel Oil) Emulsion Fuel (MDO (Marine Diesel Oil) 에멀젼 연료에 의한 디젤엔진의 배출가스 저감)

  • Kim, Moon-Chan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.476-482
    • /
    • 2014
  • In this study, the characteristics of emulsified fuel and engine emissions were studied with engine dynamometer. Microexplosion took place in the combustion chamber. While combustion, emulsion fuel scattered to micro particles and it caused to smoke reduction. The heat produced from water vapour reduce the temperature of internal combustion chamber and it caused to inhibition of NOx production. It can be verified by the lower exhaust temperature of each ND-13 mode using emulsion fuel than that of MDO fuel. The NOx and smoke concentration were reduced by increasing water content in emulsion fuel. The power also decreased according to the increment of water content of emulsion fuel because emulsion fuel has low calorific value due to high water content than MDO. As a result of ND-13 mode test with 17% moisture content, it was achieved 24% reduction in NOx production, 76% reduction in smoke density, 11% reduction of $SO_2$ and 13% reduction in power loss.

Performance Analysis of Direct Expansion and Organic Rankine Cycle for a LNG Cold Power Generation System (LNG냉열발전시스템에 있어서 직접팽창 및 유기랭킨사이클의 운전성능평가)

  • Cho, Eun-Bi;Jeong, Moon;Hwang, In-Ju;Kang, Choon-Hyoung
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.1
    • /
    • pp.55-62
    • /
    • 2015
  • The liquefaction to produce LNG (liquefied natural gas) is the only practical way for mass transportation of natural gas across oceans, which accompanies considerable energy consumption in LNG plants. Power generation is one of the effective utilization ways of LNG cold energy which evolves during the vaporization process of LNG with sea water. In this work, performance analysis of two cold energy generation processes, direct expansion and organic Rankine cycles, were carried out by using Aspen HYSYS simulation. The results show that the performance of the organic Rankine cycle is superior to the direct expansion.

1-D Analysis for Water Spray Cooling of Exhaust Gas in Combustor Test Facility (물 분무를 이용한 연소가스 냉각 1차원 해석)

  • Im, Ju Hyun;Kim, Myung Ho;Kim, Yeong Ryeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.61-67
    • /
    • 2015
  • The cooling of hot exhaust gas is an important issue for the construction of combustor test facility. Water spray is an effective method for exhaust gas cooling due to its large latent heat in process of evaporation. In this study, 1-D analysis has been performed based on continuity, energy conservation, and saturated vapor property to understand water spray cooling of combustion gas. In the exhaust duct of combustor test facility, the injected water decreases combustion gas temperature, and evaporates in the combustion gas. However, some of the injected water is collected in the sump due to condensation. The evaporation of water helps combustion gas cooling, but causes pressure increase inside the exhaust duct due to increase of vapor pressure. These phenomena has been analyzed by 1-D modeling in this study. From 1-D analysis, the adequate mass flow rate of water spray to cool combustion gas and to avoid excessive pressure rise inside the exhaust duct has been decided.

Design of Hazardous Fume Exhaust System in Vacuum Pressure Impregnation Process Using CFD (CFD를 이용한 진공가압함침공정 내 유해가스 배출시스템 설계)

  • Jang, Jungyu;Yoo, Yup;Park, Hyundo;Moon, Il;Lim, Baekgyu;Kim, Junghwan;Cho, Hyungtae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.521-531
    • /
    • 2021
  • Vacuum Pressure Impregnation (VPI) is a process that enhances physical properties by coating some types of epoxy resins on windings of stator used in large rotators such as generators and motors. During vacuum and pressurization of the VPI process, resin gas is generated by vaporization of epoxy resin. When the tank is opened for curing after finishing impregnation, resin gas is leaked out of the tank. If the leaked resin gas spreads throughout the workplace, there are safety and environmental problems such as fire, explosion and respiratory problems. So, exhaust system for resin gas is required during the process. In this study, a case study of exhaust efficiency by location of vent was conducted using Computational Fluid Dynamics (CFD) in order to design a system for exhausting resin gas generated by the VPI process. The optimal exhaust system of this study allowed more than 90% of resin gas to be exhausted within 1,800 seconds and reduced the fraction of resin gas below the Low Explosive Limit (LEL).

Gas Chromatographic Determination of Benfuresate through On-column Injection (On-column Injector를 이용한 benfuresate의 분석)

  • Kwon, Jin-Wook;Kim, Kyun;Kim, Yong-Hwa
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.2
    • /
    • pp.141-145
    • /
    • 2002
  • Benfuresate의 잔류분석을 위해 GC-FPD(S-mode)를 이용하여 분석조건을 설정 중 열적 불안정으로 인해 열분해 산물과 모 화합물이 혼재됨이 확인되었다. 가스크로마토그라프를 이용한 열분해의 주된 요인은 주입구의 온도와 주입구내의 기화 정도인 것으로 판단되었으며, 주입구를 Chauhan과 Debre 가 고안한 on-column으로 교체 후 분석한 결과 분해산물이 없는 단일 봉우리의 크로마토그램을 얻을 수 있었고, 절대량으로 0.6-4ng의 정량 범위 내에서 유의성 높은 검량선을 얻을 수 있는 주입구 온도는 20$0^{\circ}C$였다.

Evaluation of VOCs Concentrations for Ventilation System in Subway (지하철 역사내 효과적인 환기체계 정립을 위한 휘발성유기화합물 농도 평가)

  • 조장제;장정욱;최우건;김태오;박덕신;정우성
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.431-432
    • /
    • 2003
  • 급속한 도시화, 인구 과밀화로 인한 교통문제와 생활공간의 확보는 현재 대도시가 직면한 사회적인 문제이다. 이와 같은 대도시의 교통문제를 해결하기 위해 건설된 지하철은 인구의 도시집중으로 인해 발생하는 교통량의 증가를 효과적으로 관리할 수 있는 유일한 운송 수단이다. 이러한 지하철의 이용공간은 밀폐성으로 인해 환기가 용이치 않고, 그로 인한 유해물질의 축적으로 인체에 대한 위해성이 대두되고 있다. 이에 본 연구에서는 지하공간 내 오염물질 중 가스상 오염물질 즉, 휘발성유기화합물질(VOCs)을 측정, 분석함으로써 지하역사내의 쾌적한 환경을 확보하기 위한 효과적인 방안을 정립하는데 일조 하고자 한다. (중략)

  • PDF

A Study for the Improvement of Start Ability and Exhaust Emissions in a Conventional Mixer Type LPG Engine on Cold Start (LPG 엔진의 냉 시동시 시동성 개선 및 배출들 저감을 위한 연구)

  • 김우석;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.84-92
    • /
    • 2002
  • On the cold start of LPG engine, as the engine temperature has not reached its equilibrium temperature, liquid LPG could not be changed perfectly gaseous LPG, although it was passed to the vaporizer. Liquid and gas mixed fuel could influence starting ability and exhaust emission characteristics of LPG engine. In this study, the vaporization characteristic of liquid LPG was investigated with a conventional vaporizer and the vaporizer with heat source(glow plug) installed at preheated chamber inlet, by using the visualization methods and engine test. According to visualization result, even if the engine coolant temperature was $14^{\circ}C$, liquid fuel was supplied to primary chamber over 25 seconds without vaporizing from preheated chamber in such a conventional vaporizer. However, the vaporizer with heat source do not correspond with that, scarcely had been trim on glow plug when LPG began to vaporize. The effectiveness of heat source could be verified by application to the conventional LPG engine.

A Study on the Development of Icing by Injection of LPG in the Liquid Phase around Injector (I) (LPG 액상 분사 시 인젝터 주위의 Icing 현상에 관한 연구 (I))

  • 김우석;박정철;박심수;유재석;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.87-94
    • /
    • 2003
  • Recently, LPLi(Liquied-Phase LPG injection) system is studied for the new stringent emission regulations. But , there are some problems to be solved such as injector tip icing and fuel leakage for LPLi system development. In this paper, the icing problem near injector tip which leads to difficulty of accurate A/F control was studied and reported. Icing of injector tip and port wall was observed at all the cases in this study regardless of injection duration and angle, air humidity change. The spray angle of LPLi was observed approximately two times wider than that of Gasoline injection. This makes the LPLi spray collide with intake port around injector tip. Temperature of the wetted area was decreased and icing of water vapor contained in intake air because of evaporation of the fuel film. The ice of the injector tip and port wall is also affected by the materials related to heat transfer.

Study of the air liquefaction system using the LNG cold energy (LNG 냉열을 이용한 공기 액화의 특성 연구)

  • Park, Dong-Hoon;Yun, Sang-Kook
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.233-234
    • /
    • 2006
  • LNG is extremely cold, $-160^{\circ}C$ in its liquid state. When it vaporizes, returning to its natural state (re-vaporization), it cools its surroundings. This is cold energy. The manufacturing of liquid air is the first processes developed as the most effective utilization of LNG cold. In this paper, adopting the LNG cold process for manufacturing liquid air was developed and analysed. The result showed that as the higher air pressure and adapting nitrogen precooling, liquefaction rate and cumulative mass was increased.

  • PDF

A Study on the Engine Performance and Emission of Gasoline-Methanol Blend in Vehicle Engine (자동차 엔진의 혼합연료가 엔진 성능과 배기가스에 미치는 영향에 관한 연구)

  • Cho, H.M.
    • Journal of ILASS-Korea
    • /
    • v.4 no.3
    • /
    • pp.24-31
    • /
    • 1999
  • The engine performance and combustion characteristics of methanol blended fuel of spark ignition engine were discussed on the basics of experimental investigation. The effects of methanol blending fuel on combustion in cylinder were investigated under various conditions of engine cycle and blending fuel on combustion in cylinder were investigated tinder various conditions of engine cycle and blending ratios. The results showed thai the engine performance was influenced by the methanol blending ratio and the variations of operating conditions test engine. The increase of fuel temperature brought on the improvement of combustion characteristics such as cylinder pressure. the rate of pressure rise and heat release in an engine. The burning rate of fuel-air mixture, the exhaust emissions and the other characteristics of performance were discussed also.

  • PDF