• Title/Summary/Keyword: 기하학적 데이터

Search Result 308, Processing Time 0.022 seconds

Construction of MIRD-type Korean Adult Male Phantom and Calculation of Dose Conversion Coefficients for Photon (한국 성인남성 MIRD형 모의피폭체 제작 및 광자 외부피폭 선량환산인자 산출)

  • Park, Sang-Hyun;Lee, Choon-Sik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.2
    • /
    • pp.97-104
    • /
    • 2004
  • MIRD-type Korean adult male phantom, 'KMIRD' was constructed to calculate Korean-specific dosimetric quantities for radiation protection consideration. The external shape of KMIRD was based on national physical standard data of Korean. KMIRD has thicket trunk than MIRD5 and arm models divided from trunk. The height and weight of the KMIRD are 171 cm and 63.8 kg. ICRP23 data were referred to constitute organs and tissues of KMIRD. However nine organs were constructed based on Korean reference data provided by Radiation Health Research Institute. In the present study, the MCNPX2.3 Monte Carlo transport code was combined with KMIRD to calculate dose conversion coefficients for photon in the energy range from 0.05 to 10 MeV. The simulated irradiation geometries are broad parallel photon beams in AP, PA, LLAT and RLAT direction. Absorbed dose conversion coefficients were compared with data calculated with MIRD5, MIRD-type phantom based on ICRP23 reference man. In some organs, the discrepancies between two phantoms amount up to nearly 30%. The effective doses conversion coefficients of KMIRD are lower than those of MIRD5. The dose discrepancies between two MIRD-type phantoms ate because of physical differences between Korean and Western, also geometric differences between two phantoms. KMIRD should be revised using the full set of Korean reference data of all organs. The developed MIRD-type Korean adult male phantom can be applied to dose assessment of internal exposure.

Spectrophotometric Study of Acidity and Complex Formation of Anti-Inflammatory Drug Piroxicam with Some Transition Metal Ions in Different Methanol/Water Mixtures by Chemometric Methods (Chemometric 방법에 의한 메탄올/물 계에서 전이 금속 이온과 소염제 Piroxicam의 산성도 및 착체 형성에 관한 분광광도법 연구)

  • Ghasemi, Jahan B.;Jalalvand, Alireza
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.693-703
    • /
    • 2009
  • The complex formation of anti-inflamatory drug piroxicam (PX, 4-hydroxy-2-methyl-N-2--pridyl-2H-1,2-benzothiazine-3-carboxadiamide-1,1-dioxide) with transition metal ions Co(II), Ni(II), Cu(II) and Zn(II) in methanol(MeOH)/water binary mixtures were studied by spectrophotometric method at 25$^{\circ}C$, constant pH = 5.0 and I = 0.1 M. The computer program SQUAD was used to extract the desired information from the spectral data. The outputs of the fitting processes were stability constants, standard deviations of the estimated stability constants, concentration distribution diagrams and spectral profiles of all species. The sequence of the stability constants of PX complexes with Co(II), Ni(II), Cu(II) and Zn(II) follow the Cu(II) > Co(II) > Ni(II) ${\approx}$ Zn(II) order. This may be due to different geometry tendencies of these metal ions. The acidity constants of the PX were also determined under above condition from its absorption spectra at different pH values. The computer program DATAN was used for determination of acidity constants of PX. The validity of the obtained acidity constants was checked by a well known computer program SPECFIT/32. The effects of the different parameters like solvent nature, cations characteristics on the stability and acidity constants were thoroughly discussed.

Development of a New Lumped-Mass Stick Model using the Eigen-Properties of Structures (구조물의 동적 고유특성을 이용한 새로운 집중질량모델 개발)

  • Roh, Hwa-Sung;Youn, Ji-Man;Lee, Hu-Seok;Lee, Jong-Seh
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.19-26
    • /
    • 2012
  • For a seismic design or performance evaluation of a structure, an experimental investigation on a scale model of the structure or numerical analysis based on the finite element model is considered. Regarding the numerical analysis, a three-dimensional finite element analysis is performed if a high accuracy of the results is required, while a sensitivity or fragility analysis which uses huge seismic ground motions leads to the use of a lumped-mass stick model. The conventional modeling technique to build the lumped-mass stick model calculates the amount of the lumped mass by considering the geometric shape of the structure, like a tributary area. However, the eigenvalues of the conventional model obtained through such a calculation are normally not the same as those of the actual structure. In order to overcome such a deficiency, in this study, a new lumped mass stick model is proposed. The model is named the "frequency adaptive-lumped-mass stick model." It provides the same eigenvalues and similar dynamic responses as the actual structure. A non-prismatic column is considered as an example, and its natural frequencies as well as the dynamic performance of the new lumped model are compared to those of the full-finite element model. To investigate the damping effect on the new model, 1% to 5% of the critical damping ratio is applied to the model and the corresponding results are also compared to those of the finite element model.

A Study on Geoid Model Development Method in Philipphines (필리핀 지오이드모델의 개발방안 연구)

  • Lee, Suk-Bae;Pena, Bonifasio Dela
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.6
    • /
    • pp.699-710
    • /
    • 2009
  • If a country has her geoid model, it could be determine accurate orthometric height because the geoid model could provide continuous equi-gravity potential surface. And it is possible to improve the coordinates accuracy of national control points through geodetic network adjustment considering geoidal heights. This study aims to find the best way to develop geoid model in Philippines which have similar topographic conditions as like Malaysia and Indonesia in Eastsouth asia. So, in this study, it is surveyed the general theories of geoid determination and development cases of geoid model in Asia and it is computed that the geoidal heights and gravity anomalies by spherical harmonic analysis using EGM2008, the latest earth geopotential model. The results show that first, the development of gravimetric geoid model based on airborne gravimetry is needed and second, about 200 GPS surveying data at national benchmark is needed. It is concluded that it is the most reasonable way to develop the hybrid geoid model through fitting geometric geoid by GPS/leveling data to gravimetric geoid. Also, it is proposed that four band spherical Fast fourier transformation(FFT) method for evaluation of Stokes integration and remove and restore technique using EGM2008 and SRTM for calculation of gravimetric geoid model and least square collocation algorithm for calculation of hybrid geoid model.

Study on the Coefficient of Thermal Expansion for Composites Containing 2-Dimensional Ellipsoidal Inclusions (2차원 타원형의 충전제를 함유하는 복합재료의 열팽창 계수 연구)

  • Lee, Kee-Yoon;Kim, Kyung-Hwan;Jeoung, Sun-Kyoung;Jeon, Hyoung-Jin;Joo, Sang-Il
    • Polymer(Korea)
    • /
    • v.31 no.2
    • /
    • pp.160-167
    • /
    • 2007
  • This paper proposes a model for the solutions predicting the coefficient of thermal expansion of composites including fiber-like shaped$(a_1>a_2=a_3)$ and disk-like shaped$(a_1=a_2>a_3)$ inclusions like two dimensional geometries, which was analyzed by one axis and a single aspect ratio, $(\rho_\alpha=a_1/a_3)$. The analysis follows the procedure developed for elastic moduli by using the Lee and Paul's approach. The effects of the aspect ratio on the coefficient of thermal expansion of composites containing aligned isotropic inclusions are examined. This model should be limited to analyze the composites with unidirectionally aligned inclusions and with complete binding to each other of both matrix and inclusions having homogeneous properties. The longitudinal coefficients of thermal expansion $\alpha_{11}$ decrease and approach the coefficient of thermal expansion of filler, as the aspect ratios increase. However, the transverse coefficients of thermal expansion $\alpha_{33}$ increase or decrease with the aspect ratios.

Empirical Modeling of Lens Distortion in Change of Focal Length (초점거리 변화에 따른 렌즈 왜곡의 경험적 모델링)

  • Jeong, Seong-Su;Woo, Sun-Kyu;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.1
    • /
    • pp.93-100
    • /
    • 2008
  • The parameters of lens such as focal length, focus, and aperture stop changes while shooting the scenes with zoom lens. Especially, zooming action dramatically changes the geometry of lens system that causes significant change of lens model. We investigated how the lens model changes while zooming in general shooting condition. Each parameters of lens model was estimated and checked whether they can be modeled well in the condition of auto-controlling focus, aperture and vibration reduction. In order to do this, calibration images were taken, modeled in different fecal length setting. And changing patterns of models were inspected to find out if there is some elements that have some particular pattern in changing with respect to focal length. The result showed us that although we didn't control the focus and aperture setting, there's specific changing patterns in radial and do-centering distortion. Especially, the strong linear correlation was found between coefficient of $r^2$ and focal length. It is expected that many parts of distortion can be eliminated without additional self calibration even if zoom operation is done when shooting the scenes if we know its fecal length and model of this coefficient.

Prediction Method of Settlement Based on Field Monitoring Data for Soft Ground Under Preloading Improvement with Ramp Loading (점증 선행 하중으로 개량하는 연약지반의 계측기반 침하량 예측방법 개발)

  • Woo, Sang-Inn;Yune, Chan-Young;Baek, Seung-Kyung;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.83-91
    • /
    • 2008
  • Previous settlement prediction methods based on settlement monitoring were developed under instantaneous loading condition and have restriction to be applied to soft ground under ramp loading condition. In this study, settlement prediction method under ramp loading was developed. New settlement prediction method under ramp loading considered influence factors of consolidation settlement such as thickness of clayed layer, quantity of surcharge load and preconsolidation pressure, etc. Geometrical correction method based on hyperbolic method (1991) and correction method based on probability theory were applied to increase accuracy of settlement prediction using field monitoring data after ramp loading. Large consolidation tests for ideally controlled one dimensional consolidation under ramp loading condition were performed and the settlement behavior was predicted based on the monitoring data. New prediction method yielded good result of entire settlement behavior by using data during an early stage of ramp load. Additionally, new prediction method offered better settlement prediction which had final settlement prediction in close proximity and low RMSE(Root Mean Square Error) than previous method such as hyperbolic method did.

Machine Learning Based MMS Point Cloud Semantic Segmentation (머신러닝 기반 MMS Point Cloud 의미론적 분할)

  • Bae, Jaegu;Seo, Dongju;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.939-951
    • /
    • 2022
  • The most important factor in designing autonomous driving systems is to recognize the exact location of the vehicle within the surrounding environment. To date, various sensors and navigation systems have been used for autonomous driving systems; however, all have limitations. Therefore, the need for high-definition (HD) maps that provide high-precision infrastructure information for safe and convenient autonomous driving is increasing. HD maps are drawn using three-dimensional point cloud data acquired through a mobile mapping system (MMS). However, this process requires manual work due to the large numbers of points and drawing layers, increasing the cost and effort associated with HD mapping. The objective of this study was to improve the efficiency of HD mapping by segmenting semantic information in an MMS point cloud into six classes: roads, curbs, sidewalks, medians, lanes, and other elements. Segmentation was performed using various machine learning techniques including random forest (RF), support vector machine (SVM), k-nearest neighbor (KNN), and gradient-boosting machine (GBM), and 11 variables including geometry, color, intensity, and other road design features. MMS point cloud data for a 130-m section of a five-lane road near Minam Station in Busan, were used to evaluate the segmentation models; the average F1 scores of the models were 95.43% for RF, 92.1% for SVM, 91.05% for GBM, and 82.63% for KNN. The RF model showed the best segmentation performance, with F1 scores of 99.3%, 95.5%, 94.5%, 93.5%, and 90.1% for roads, sidewalks, curbs, medians, and lanes, respectively. The variable importance results of the RF model showed high mean decrease accuracy and mean decrease gini for XY dist. and Z dist. variables related to road design, respectively. Thus, variables related to road design contributed significantly to the segmentation of semantic information. The results of this study demonstrate the applicability of segmentation of MMS point cloud data based on machine learning, and will help to reduce the cost and effort associated with HD mapping.

The Comparative Analysis of External Dose Reconstruction in EPID and Internal Dose Measurement Using Monte Carlo Simulation (몬테 카를로 전산모사를 통한 EPID의 외부적 선량 재구성과 내부 선량 계측과의 비교 및 분석)

  • Jung, Joo-Young;Yoon, Do-Kun;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.253-258
    • /
    • 2013
  • The purpose of this study is to evaluate and analyze the relationship between the external radiation dose reconstruction which is transmitted from the patient who receives radiation treatment through electronic portal imaging device (EPID) and the internal dose derived from the Monte Carlo simulation. As a comparative analysis of the two cases, it is performed to provide a basic indicator for similar studies. The geometric information of the experiment and that of the radiation source were entered into Monte Carlo n-particle (MCNPX) which is the computer simulation tool and to derive the EPID images, a tally card in MCNPX was used for visualizing and the imaging of the dose information. We set to source to surface distance (SSD) 100 cm for internal measurement and EPID. And the water phantom was set to be 100 cm of the source to surface distance (SSD) for the internal measurement and EPID was set to 90 cm of SSD which is 10 cm below. The internal dose was collected from the water phantom by using mesh tally function in MCNPX, accumulated dose data was acquired by four-portal beam exposures. At the same time, after getting the dose which had been passed through water phantom, dose reconstruction was performed using back-projection method. In order to analyze about two cases, we compared the penetrated dose by calibration of itself with the absorbed one. We also evaluated the reconstructed dose using EPID and partially accumulated (overlapped) dose in water phantom by four-portal beam exposures. The sum dose data of two cases were calculated as each 3.4580 MeV/g (absorbed dose in water) and 3.4354 MeV/g (EPID reconstruction). The result of sum dose match from two cases shows good agreement with 0.6536% dose error.

Preliminary Result of Lineament Analysis for the Potential Site Selection of HLW Geological Disposal (HLW 지층처분 광역 후보부지 선정을 위한 선형구조 예비 분석 결과)

  • Ko, Kyoungtae;Kihm, You Hong;Lee, Hong-Jin
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.167-176
    • /
    • 2018
  • It is necessary to consider various geological parameters such as lithology, geological structure, earthquake, hydraulic geology, geochemistry, geological engineering, and geothermal in order to select potential sites for HLW(high-level radioactive waste) geological disposal. In particular, the geological lineament reflects the characteristics of various geological parameters and can be used as an important criterion for site selecting such as nuclear power plants and HLW repositories. In this paper, the Finnish lineament classification method for HLW disposal site selection through the lineament analysis was applied to the lineament data in the Korean peninsula. For this purpose, we used previous lineament data from the KIGAM(Korea Institute of Geoscience and Mineral Resources) and obtained new lineament data from the field geologists such as structural geologist, paleoseismologist, and geomorphologist. To ensure the reliability of the new lineament analysis data, we used high-resolution satellite images and hill-shade relief maps which were constructed by a digital elevation model. In the prevailing direction analysis from the acquired lineament data, the NNE-SSW direction was the most dominant, but the ENE-WSW and NNW-SSE directions also showed highly frequency depending on the experts. Applying the Finnish classification method, the geometrical development characteristics of the lineament corresponding to the Class 1 and 2 used for the wide-wide candidate site were compared. As a result of direction analysis for Class 1, the NNE-SSW direction was the most dominant and the WNW-ESE direction also showed a high frequency. In the case of Class 2, the NNE-SSW is the most prevalent and WNW-ESE or ENE-WSW direction also had highly frequency depending on the experts. Different lineament analysis results based on the same data are interpreted as a result of subjective experience and analytical criteria from the every experts. Therefore, it is necessary to establish integrated criteria and consider geophysical data for the publication of reliable nation-wide lineament map.