• Title/Summary/Keyword: 기하복원

검색결과 150건 처리시간 0.024초

Underwater Acoustic Image Classification of a Cylindrical object using the Hough Transformation and Nth Degree Polynomial Interpolation (N차 다항식 보간법과 허프 변환을 이용한 원통형 수중 물체 영상 식별)

  • Jeong, Euicheol;Shim, Taebo;Kim, Jangeun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제50권2호
    • /
    • pp.193-200
    • /
    • 2013
  • In this paper, underwater acoustic image classification of a cylindrical object using the Hough transformation is proposed. Hough transformation is often used to classify a cylindrical object in the optical systems. However, it is difficult to apply to the underwater acoustic image system because of lower resolution and noisier underwater environments. Thus, the cylindrical object was modeled and its geometric depth(GD) pixels were restored in order to make them suitable for the Hough transformation by using moving average filter and a polynomial interpolation method. As a result, restored GD pixels are similar to original ones and test results show high performance in classification.

Reconstruction of Transmitted Images from Images Displayed on Video Terminals (영상 단말에 전송된 이미지를 이용한 전송 영상 복원)

  • Park, Su-Kyung;Lee, Seon-Oh;Sim, Dong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • 제49권1호
    • /
    • pp.49-57
    • /
    • 2012
  • An image reconstruction algorithm is proposed to estimate transmitted original images from images displayed on a video terminal. The proposed algorithm acquires images that are displayed on video terminal screens by using a camera. The transmitted images are then estimated with the acquired images. However, camera-acquired images exhibit geometric and color distortions caused by characteristics of the camera and display devices. We make use of a geometric distortion correction algorithm that exploits homography and color distortions using a weighted-linear model. The experimental results show that the proposed algorithm yields promising estimation performance with respect to the peak signal-to-noise ratio (PSNR). PSNR values of the estimated images with respect to the corresponding original images range from 28-29 dB.

Detecting and Restoring the Occlusion Area for Generating the True Orthoimage Using IKONOS Image (IKONOS 정사영상제작을 위한 폐색 영역의 탐지와 복원)

  • Seo Min-Ho;Lee Byoung-Kil;Kim Yong-Il;Han Dong-Yeob
    • Korean Journal of Remote Sensing
    • /
    • 제22권2호
    • /
    • pp.131-139
    • /
    • 2006
  • IKONOS images have the perspective geometry in CCD sensor line like aerial images with central perspective geometry. So the occlusion by buildings, terrain or other objects exist in the image. It is difficult to detect the occlusion with RPCs(rational polynomial coefficients) for ortho-rectification of image. Therefore, in this study, we detected the occlusion areas in IKONOS images using the nominal collection elevation/azimuth angle and restored the hidden areas using another stereo images, from which the rue ortho image could be produced. The algorithm's validity was evaluated using the geometric accuracy of the generated ortho image.

Cross-sectional Optimization of a Human-Powered Aircraft Main Spar using SQP and Geometrically Exact Beam Model (기하학적 정밀 보 이론 및 SQP 기법에 의한 인간동력항공기 Main Spar 단면 설계 최적화 연구)

  • Kang, Seung-Hoon;Im, Byeong-Uk;Cho, Hae-Seong;Shin, Sang-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제31권4호
    • /
    • pp.183-190
    • /
    • 2018
  • This paper presents optimization of the main spar of Human-Powered Aircraft (HPA) wing. Mass minimization was attempted, while considering large torsional deformation of the beam. Sequential Quadratic Programming (SQP) method was adopted as a relevant tool to conduct structural optimization algorithm. An inner diameter and ply thicknesses of the main spar were selected as the design variables. The objective function includes factors such as mass minimization, constant tip bending displacement, and constant tip twist of the beam. For estimation of bending and torsional deformation, the geometrically exact beam model, which is appropriate for large deflection, was adopted. Properties of the cross sectional area which the geometrically exact beam model requires were obtained by Variational Asymptotic Beam Sectional Analysis (VABS), which is a cross sectional analysis program. As a result, maintaining tip bending displacement and tip twist within 1.45%, optimal design that accomplished 7.88% of the mass reduction was acquired. By the stress and strain recovery, structural integrity of the optimal design and validity of the present optimization procedure were authenticated.

High-resolution 3D Object Reconstruction using Multiple Cameras (다수의 카메라를 활용한 고해상도 3차원 객체 복원 시스템)

  • Hwang, Sung Soo;Yoo, Jisung;Kim, Hee-Dong;Kim, Sujung;Paeng, Kyunghyun;Kim, Seong Dae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제50권10호
    • /
    • pp.150-161
    • /
    • 2013
  • This paper presents a new system which produces high resolution 3D contents by capturing multiview images of an object using multiple cameras, and estimating geometric and texture information of the object from the captured images. Even though a variety of multiview image-based 3D reconstruction systems have been proposed, it was difficult to generate high resolution 3D contents because multiview image-based 3D reconstruction requires a large amount of memory and computation. In order to reduce computational complexity and memory size for 3D reconstruction, the proposed system predetermines the regions in input images where an object can exist to extract object boundaries fast. And for fast computation of a visual hull, the system represents silhouettes and 3D-2D projection/back-projection relations by chain codes and 1D homographies, respectively. The geometric data of the reconstructed object is compactly represented by a 3D segment-based data format which is called DoCube, and the 3D object is finally reconstructed after 3D mesh generation and texture mapping are performed. Experimental results show that the proposed system produces 3D object contents of $800{\times}800{\times}800$ resolution with a rate of 2.2 seconds per frame.

Correction of Missing Feature Points for 3D Modeling from 2D object images (2차원 객체 영상의 3차원 모델링을 위한 손실 특징점 보정)

  • Koh, Sung-shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제19권12호
    • /
    • pp.2844-2851
    • /
    • 2015
  • How to recover from the multiple 2D images into 3D object has been widely studied in the field of computer vision. In order to improve the accuracy of the recovered 3D shape, it is more important that noise must be minimized and the number of image frames must be guaranteed. However, potential noise is implied when tracking feature points. And the number of image frames which is consisted of an observation matrix usually decrease because of tracking failure, occlusions, or low image resolution, and so on. Therefore, it is obviously essential that the number of image frames must be secured by recovering the missing feature points under noise. Thus, we propose the analytic approach which can control directly the error distance and orientation of missing feature point by the geometrical properties under noise distribution. The superiority of proposed method is demonstrated through experimental results for synthetic and real object.

Developing Expert System for Recovering the Original Form of Ancient Relics Based on Computer Graphics and Image Processing (컴퓨터 그래픽스 및 영상처리를 이용한 문화 원형 복원 전문가시스템 개발)

  • Moon, Ho-Seok;Sohn, Myung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • 제11권6호
    • /
    • pp.269-277
    • /
    • 2006
  • We propose a new expert system for recovering the broken fragments of relics into an original form using computer graphics and image processing. This paper presents a system with an application to tombstones objects of flat plane with letters carved in for assembling the fragments by placing their respective fragments in the right position. The matching process contains three sub-processes: aligning the front and letters of an object, identifying the matching directions, and determining the detailed matching positions. We apply least squares fitting, vector inner product, and geometric and RGB errors to the matching process. It turned out that 2-D translations via fragments-alignment enable us to save the computational load significantly. Based on experimental results from the damaged cultural fragments, the performance of the proposed method is illustrated.

  • PDF

An Enhancement of Microphone Array System Using Hybrid Window Algorithm (CPSP의 저주파 위상 복원을 이용한 화자 위치 추적 알고리듬의 성능 개선)

  • Lee Hak-Ju;Kim Ki-Man;Lee Won-Cheol;Lee Chungyong
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 한국음향학회 2000년도 학술발표대회 논문집 제19권 2호
    • /
    • pp.213-216
    • /
    • 2000
  • 본 연구에서는 마이크로폰 어레이를 이용하여 화자의 음성신호로부터 화자의 위치를 추정하는 기존의 대표적인 알고리듬인 CPSP(Cross Power Spectrum Phase)로부터 보다 반향에 강인한 알고리듬인 저주파 위상 복원 알고리듬을 제안한다. CPSP 함수는 상호 상관관계(Cross Correlation)가 정규화 되어있는 형태를 갖는데, CPSP 함수의 최대 값 인덱스로부터 화자의 공간정보인 TDOA(Time Difference Of Arrival)를 추출한다. 그러나 CPSP 함수를 이용한 공간정보 추정 알고리듬은 실내환경에서 심각하게 일어나는 반향신호에 대해서 취약한 단점을 갖고 있다. 본 논문에서 제안하는 저주파 위상복원 알고리듬은 주파수 측면에서 반향신호가 CPSP 함수에 미치는 영향을 분석하여 반향으로 인하여 왜곡된 위상 성분을 복원함으로써 보다 신뢰도 있는 TDOA 추정을 가능하게 한다. 반향신호로 인한 CPSP의 위상은 저주파보다 고주파에서 심하게 왜곡되는데, 각각의 반향신호의 도달 시간을 기하학적 분포를 갖는 확률변수로 모델링하여 이를 수학적으로 증명하였다. 또한 실제 환경에서 채집한 음성신호를 이용한 모의 실험을 통해 개선된 알고리듬의 성능 개선을 확인하였다.

  • PDF

Progressive Reconstruction of 3D Objects from a Single Freehand Line Drawing (Free-Hand 선화로부터 점진적 3차원 물체 복원)

  • 오범수;김창헌
    • Journal of KIISE:Computer Systems and Theory
    • /
    • 제30권3_4호
    • /
    • pp.168-185
    • /
    • 2003
  • This paper presents a progressive algorithm that not only can narrow down the search domain in the course of face identification but also can fast reconstruct various 3D objects from a sketch drawing. The sketch drawing, edge-vertex graph without hidden line removal, which serves as input for reconstruction process, is obtained from an inaccurate freehand sketch of a 3D wireframe object. The algorithm is executed in two stages. In the face identification stage, we generate and classify potential faces into implausible, basis, and minimal faces by using geometrical and topological constraints to reduce search space. The proposed algorithm searches the space of minimal faces only to identify actual faces of an object fast. In the object reconstruction stage, we progressively calculate a 3D structure by optimizing the coordinates of vertices of an object according to the sketch order of faces. The progressive method reconstructs the most plausible 3D object quickly by applying 3D constraints that are derived from the relationship between the object and the sketch drawing in the optimization process. Furthermore, it allows the designer to change viewpoint during sketching. The progressive reconstruction algorithm is discussed, and examples from a working implementation are given.

3D Object Restoration and Data Compression Based on Adaptive Simplex-Mesh Technique (적응 Simplex-Mesh 기술에 기반한 3차원 물체 복원과 자료 압축)

  • 조용군
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제9권4호
    • /
    • pp.436-443
    • /
    • 1999
  • Most of the 3D object reconstruction techniques divide the object into multiplane and approximate the surfaces of the object. The Marching Cubes Algorithm which initializes the mesh structure using a given isovalue. and Delaunay Tetrahedrisation are widely used. Deformable models are well-suited for general object reconstruction because they make little assumptions about the shape to recover and they can reconstruct objects *om various types of datasets. Now, many researchers are studying the reconstruction systems based on a deformable model. In this paper, we propose a novel method for reconstruction of 3D objects. This method, for a 3D object composed of curved planes, compresses the 3D object based on the adaptive simplexmesh technique. It changes the pre-defined mesh structure, so that it may approach to the original object. Also, we redefine the geometric characteristics such as curvatures. As results of simulations, we show reconstruction of the original object with high compression and concentration of vertices towards parts of high curvature in order to optimize the shape description.

  • PDF