• Title/Summary/Keyword: 기체-기체 인젝터

Search Result 43, Processing Time 0.022 seconds

Study on Thermophysical Property Characteristics of a 4 Species Kerosene Surrogate in a Swirl Injector at Supercritical Pressure Condition (초임계 압력 조건 스월 인젝터에서 4개 화학종 혼합물 케로신 대체 모델의 열역학 물성 특성 연구)

  • Kim, Kukjin;Heo, Junyoung;Sung, Honggye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.48-58
    • /
    • 2013
  • Characteristics of thermophysical properties and flow structures in a swirl injector at supercritical pressure have been investigated using the kerosene surrogate consisting of four species and various ideal and real gas equations of state. The quantitative comparisons of thermophysical properties for equations of state have been performed. Also, a large eddy simulation and preconditioning technique for getting an effective convergence rate are applied to analyze turbulent flow in a swirl injector. The flow characteristics in the injector has significantly different behaviors depending on the equations of state due to the different thermophysical properties in the injector. The Redlich-Kwong-Peng-Robinson equation of state provides the most suitable results in the wide range of temperature.

An experimental study on the characteristics of spray pattern by the Airblast Atomizer (공기충돌형 연료분사장치의 분무특성에 관한 실험적 연구)

  • Kim, Hyun-Joong;Han, Jae-Seob;Kim, Yoo;Min, Seong-Ki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.24-29
    • /
    • 1998
  • An experimental study was carried out to investigate the characteristics of spray pattern such as discharge coefficient, spray angle, and mass distribution for two-fluid airblast swirl injector, within the range of fluid supply pressure 0~13kg/$\textrm{cm}^2$. In general atomization is promoted with increasing total gas mass flow and performance of the splay pattern was more stable when radial mass flow was greater than axial mass flow, radial swirler was better than Axial swirler for atomization. Equivalent spray angle did not change with water mass flow except for the condition of 3kg/$\textrm{cm}^2$ and showed the same for the gas mass flow. Mass distribution from the patternator shows that maximum value of the distribution were lowered but distributed larger area when gas flow rate increased. Center of mass position did not change with increasing water mass flow.

  • PDF

Performance and Ignition Characteristics of a Coaxial Swirl Injector using LOX-$GCH_4$ Propellant (액체산소/기체메탄 추진제를 사용하는 동축형 스월 인젝터의 성능 및 점화특성)

  • Kim, Do-Hun;Lee, In-Chul;Kim, Jin-Kon;Koo, Ja-Ye;Park, Young-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.72-76
    • /
    • 2010
  • To research and develop a high performance injector for LRE, it needs not only cold flow test, but also investigations of combustion performance, optimization of cyclogram and thermo-fluid dynamical characteristics of combustion flow field through hot-fire test. In this study, hot-fire test of LOX-CH4 coaxial swirl injector has been carried out using lab-scale hot fire test stand which can supply and control cryogenic propellant. Ignition and continuous combustion for LOX-$GCH_4$ propellant of 0.19 kg/s total mass flowrate and 2.80 O/F Ratio was achieved through cyclogram optimization. The mean combustion chamber pressure and thrust were measured as approximately 1.43 MPa and 38.7 kgf respectively.

  • PDF

CFD Simulation of SMD Distribution of Diesel Sprays Injected from a Common Rail Injector According to Compression Ratio of Combustion Chamber (커먼레일 인젝터로부터 분사되는 디젤 분무의 연소실 압축비 변화에 따른 SMD 분포의 CFD 시뮬레이션)

  • Lee, Choong Hoon
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.123-129
    • /
    • 2014
  • A diesel spray overall SMD (Sauter mean diameter) in a spray chamber was simulated with CFD by varying the compression ratio in the spray chamber from 18:1 to 100:1. The gas densities of the spray chambers for the compression ratios of 18:1 and 100:1 were 17.97 and $74.8kg/m^3$, respectively. Standard KIVA-3V code was used for the CFD simulation. Various fuel injection patterns such as single injection, pilot injection and split injection were used for the CFD simulation. Fuel injection pressures for the simulated diesel sprays are 90 and 120 MPa. As the compression ratio increases, the CFD simulated SMD was decreased, which was generally in agreement with previous experimental studies.

Study on Spray Characteristics of Barbotage Injector for Scramjet Engine (스크램제트 엔진용 Barbotage injector의 분무 특성에 관한 연구)

  • Lee, Jinhee;Lee, Sanghoon;Yang, Inyoung;Lee, Kyungjae;Kim, Jaeho;Yang, Sooseok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.236-239
    • /
    • 2017
  • A part of the development of Scramjet Engine, this study was performed about Injectors. Barbotage injectors were used for experiment. To study characteristics of injector spray, water is supplied as a main fuel and Nitrogen is supplied for water atomization. Spray test facility and PDPA equipment were used in KARI(Korea Aerospace Research Institute). It was found that gas pressure change and spray distance is important value to spray atomization.

  • PDF

Measurements and Calculation of Injection Mass Rate of LFG for Intake Injection in Spark Ignition Engines (불꽃점화 엔진의 흡기관 분사를 위한 매립지가스 분사량의 측정 및 계산)

  • Kim, Kyoungsu;Choi, Kyungho;Jeon, Wonil;Kim, Bada;Lee, Daeyup
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.36-42
    • /
    • 2021
  • When the landfill gas generated at the landfill site is released into the atmosphere, methane gas with a high global warming potential is emitted, which adversely affects climate change. When methane contained in landfill gas is used as fuel for internal combustion engines and burned to generate electricity, it is emitted into the atmosphere in the form of carbon dioxide, which can contribute to lowering the global warming potential. Therefore, in order to use the landfill gas as fuel for power generation using an internal combustion engine, it is important to increase the thermal efficiency of the engine. Thus, it is necessary to use a fuel supply system in which gas is injected using an electronically controlled injector at an intake port for each cylinder rather than a fuel supply technology using the conventional mixer technology. In order to use the electronically controlled gas injection method, it is important to accurately measure the mass flow rate according to the conditions of using landfill gas. For this, a study was conducted to measure the injection amount and calculate them in order for the intake port gas injection of landfill gas.

Spray Combustion Analysis for Unsteady State in Combustion Chamber of Liquid Rocket Engine Considering Droplet Fluctuation (액적변동을 고려한 액체로켓의 연소실 내 비정상 분무연소 해석)

  • Jeong, Dae-Kwon;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.175-178
    • /
    • 2006
  • A numerical study for spray combustion of fluctuated fuel and oxidizer droplets injected into combustion chamber has been conducted for the analysis of spray combustion considering characteristics of injector. The 2 dimensional unsteady state flow fields have been calculated by using QUICK Scheme and SIMPLER Algorithm. As the spray model, DSF model and Euler-Lagrange Scheme have been used. The sine Auction has been used for droplet fluctuation model of fuel and oxidizer, while the coupling effects of the droplets between gas phase and evaporated vapor have been calculated by using PSIC model.

  • PDF

Modeling of CNG Direct Injection using Gaseous Sphere Injection Model (기체구 분사 모델을 이용한 CNG 직접분사식 인젝터 분사 수치해석 기법)

  • Choi, Mingi;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.47-52
    • /
    • 2016
  • This paper describes the modeling of CNG direct injection using gaseous sphere injection model. Simulation of CNG direct injection does not need break up and evaporation model compared to that of liquid fuel injection. And very fine mesh is needed near the injector nozzle to resolve the inflow boundary. Therefore it takes long computation time for gaseous fuel injection simulation. However, simulation of CNG direct injection could be performed with the coarse mesh using gaseous sphere injection model. This model was integrated in KIVA-3V code and RNG $k-{\varepsilon}$ turbulence model needs to be modified because this model tends to over-predict gas jet diffusion. Furthermore, we preformed experiments of gaseous fuel injection using PLIF (planar laser induced fluorescence)method. Gaseous fuel injection model was validated against experiment data. The simulation results agreed well with the experiment results. Therefore gaseous sphere injection model has the reliability about gaseous fuel direct injection. And this model was predicted well a general tendency of gaseous fuel injection.

Conceptual study of the Vitiated Air Heater for Scramjet test (스크램젯용 공기 가열기 개념연구)

  • Lee, Jung-Min;Kang, Kyung-Taik;Lim, Jin-Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.349-352
    • /
    • 2010
  • This is conceptual study of vitiated air heater(VAH), the necessary ground test facility, for characteristics studies of scramjet combustion and development of scramjet engines. The VAH is one of various types which provided hot air to an intake or a combustion chamber of scramjet and it must use suitable fuel to get hot combustion gas and more similar mixture gas(vitiated air) to real air. In the study, foreign VAHs being capable of providing very high temperature were researched, and injectors for VAH using LNG(CH4) or hydrogen were designed conceptually to develop scramjet vehicle.

  • PDF

Humidification of Air Using Water Injector and Cyclonic Separator (관 내 삽입 인젝터와 사이클론을 이용한 공기 가습)

  • Kim, Beom-Jun;Kim, Sung-Il;Byun, Su-Young;Kim, Min-Soo;Kim, Hyun-Yoo;Kwon, Hyuck-Ryul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.491-498
    • /
    • 2010
  • Humidification of PEM fuel cells is necessary for enhancing their performance and lifetime. In this study, a humidification system was designed and tested; the system includes an air-supply tube (inner diameter: 75 mm) through which a nozzle can be directly inserted and a cyclonic separator for the removal of water droplets. Three types of nozzles were employed to study the influence of injection pressure, air flow rate, and spray direction on the humidification performance. To evaluate the humidification performance, the concept of humidification efficiency was defined. In the absence of an external heat source, latent heat for evaporation will be supplied by the own enthalpies of water and air. Thus, the amount of water sprayed from the nozzle is the most critical factor affecting the humidification efficiency. Water droplets were efficiently removed by a cyclonic separator, but re-entrainment occurred at high air flow rates. The absolute humidity and humidification efficiency were $21.29\;kJ/kg_{da}$ and 86.57%, respectively, under the following conditions: nozzle type PJ24; spray direction angle $90^{\circ}$; injection pressure 1200 kPa; air flow rate 6000 Nlpm.