• Title/Summary/Keyword: 기체 진동 응답

Search Result 10, Processing Time 0.024 seconds

Helicopter Active Airframe Vibration Control Simulations Using an Exhaustive Test Method (Exhaustive 시험 기법을 이용한 헬리콥터 능동 기체 진동 제어 시뮬레이션)

  • Park, Byeong-Hyeon;Lee, Ye-Lin;Park, Jae-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.791-800
    • /
    • 2022
  • The number and locations of force generators and their force directions of Active Vibration Control System(AVCS) are important to maximize the airframe vibration reduction performance of helicopters. The present AVCS simulation using an exhaustive test method attempts to determine the best number and locations of force generators and their force directions for maximization of the airframe vibration reduction performance of UH-60A helicopter at 158 knots. The 4P hub vibratory loads of the UH-60A helicopter are calculated using DYMORE II, a nonlinear multibody dynamics analysis code, and MSC.NASTRAN is used to predict the vibration responses of the UH-60A airframe. The AVCS framework with an exhaustive test method is constructed using MATLAB Simulink. As a result, when applying AVCS with the optimal combination of the force generators, the 4P airframe vibration responses of UH-60A helicopter are reduced by from 19.35% to 98.07% compared to the baseline results without AVCS.

Ground Vibration Tests of SmartUAV Airframe Structure (스마트무인기 기체구조물 지상진동시험)

  • Jeon, Byoung-Hee;Kang, Hui-Won;Lee, Jung-Jin;Lee, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.482-489
    • /
    • 2010
  • This paper describes the test procedure, instrumentation, verification methodology and the results of the ground vibration test(GVT) and force vibration test(FVT) of the SmartUAV aircraft to estimate experimentally dynamic characteristics of the aircraft. Bungee cords are used to emulate free-free boundary conditions of the test aircraft. The SmartUAV is excited by three shakers and one-hundred frequency response functions(FRF's) is measured. The FRF's are reduced and analyzed to identify the dynamics parameters of the SmartUAV. To extract modal parameters of the SmartUAV such as, natural frequencies and damping ratios, the poly-reference least square complex exponential method is used in the time domain. The mode shape coefficients are estimated with the least squares frequency domain method to identify the vibration modes. The FVT was performed by fixed sine frequency with three shakers on the x, y and z direction and vibration characteristics of structures and detail equipments are measured.

Vibration Reduction Simulation of UH-60A Helicopter Airframe Using Active Vibration Control System (능동 진동 제어 시스템을 이용한 UH-60A 헬리콥터 기체의 진동 감소 시뮬레이션)

  • Lee, Ye-Lin;Kim, Do-Young;Kim, Do-Hyung;Hong, Sung-Boo;Park, Jae-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.443-453
    • /
    • 2020
  • This study using the active vibration control technique attempts to alleviate numerically the airframe vibration of a UH-60A helicopter. The AVCS(Active Vibration Control System) is applied to reduce the 4/rev vibration responses at the specified locations of the UH-60A airframe. The 4/rev hub vibratory loads of the UH-60A rotor is predicted using the nonlinear flexible dynamics analysis code, DYMORE II. Various tools such as NDARC, MSC.NASTRAN, and MATLAB Simulink are used for the AVCS simulation with five CRFGs and seven accelerometers. At a flight speed of 158knots, the predicted 4/rev hub vibratory loads of UH-60A rotor excite the airframe, and then the 4/rev vibration responses at the specified airframe positions such as the pilot seat, rotor-fuselage joint, mid-cabin, and aft-cabin are calculated without and with AVCS. The 4/rev vibration responses at all the locations and directions are reduced by from 25.14 to 96.05% when AVCS is used, as compared to the baseline results without AVCS.

Change of Piping-System Dynamics with Installation of Pogo Suppression Device (포고억제장치 설치에 따른 배관계 동특성 변화)

  • Lee Jun Kyoung;Lee Sang Yong;Lee Han Ju;Oh Seung Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.32-39
    • /
    • 2005
  • The effectiveness of the pogo suppression device (PSD) on the response of the piping system simulating the fuel (or oxidizer) supply lines of the rocket engines was investigated. The system response defined as the ratio of the flow rate to the pressure in the main tube was obtained for various PSD gas volumes $((0\~2)\times10^{-3}m^3)$ and three different baffle hole diameters (5, 50, 115mm). Existence of a gas volume in the PSD reduced the system resonance frequency. With a larger gas volume, the resonance frequency became lower, but only slightly, while the fluctuations of the main tube pressure and the flow rate damped down considerably. The resonance frequency decreased with the increase of the PSD inlet restriction (or the decrease of the baffle hole diameter), though slightly. However, with a larger inlet restriction, the PSD pressure wave showed a delayed response with the smaller amplitude compared to the pressure variation in the main tube.

Effect of Lift-offset Rotor Hub Vibratory Load Components on Airframe Vibration Responses of High-Speed Compound Unmanned Rotorcrafts (고속비행 복합형 무인 회전익기의 Lift-offset 로터 허브 진동 하중 성분과 기체 진동 응답의 상관 관계의 연구)

  • Kim, Ji-Su;Hong, Sung-Boo;Kwon, Young-Min;Park, Jae-Sang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.255-263
    • /
    • 2021
  • This paper investigates numerically the effect of rotor hub vibratory load components on the airframe vibration responses of high-speed compound unmanned rotorcraft (HCUR) using a lift-offset coaxial rotor, wings, and two propellers. The rotor hub vibratory loads are predicted using a rotorcraft comprehensive analysis code, CAMRAD II, and the airframe vibration responses are calculated by a finite element analysis software, MSC.NASTRAN. It is shown that the vibratory hub pitch moment of a lift-offset coaxial rotor is the most dominant component for both the longitudinal and vertical vibration responses at four specified locations of the airframe.

Vibration Control of Flexible Structures by using Conveying Fluid Pipe (유동유체가 흐르는 파이프에 의한 유연 구조물의 진동제어)

  • 류시웅;김건희;공창덕;오경원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.25-31
    • /
    • 2004
  • This paper describes a new vibration-suppression technique for flexible cantilevered structures by using a pipe containing an internal flow. The stability and dynamic response are analyzed based on the finite element method. The flutter limit and optimum stabilizing fluid velocity are determined in root locus diagrams. The impulse responses of the system are studied by the mode superposition method to observe the damping rate of the motion. The stabilizing effect of an internal flow is demonstrated by impulse responses of the structures with and without an material damping. It is found that the response of the pipe with flow of liquid has a larger effect of, stabilizing than that with flow of gas.

Response analysis of 6DOF fuselage model during taxiing for comparison of characteristics of single/double stage oleo-pneumatic shock absorber at nose (단-복동형 유.공압 완충장치의 전방장착특성 비교를 위한 6자유도 기체 모형의 지상 이동 응답해석)

  • Lee, Kook-Hee;Lee, Yoon-Kyu;Kim, Kwang-Joon;Lee, Sang-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.734-735
    • /
    • 2008
  • Shock absorber for rotorcraft landing gear should absorb landing impact during landing and isolate vibration to fuselage during taxiing. Double stage oleo-pneumatic shock absorber is known to have better performances than single stage oleo-pneumatic shock absorber. This paper deals with the z-direction translational acceleration at mass center, roil and pitch angular acceleration of fuselage for single and double stage oleo-pneumatic shock absorber at nose landing gear when a 6DOF rigid model is taxiing on the pound.

  • PDF

Study on the Optimal Selection of Rotor Track and Balance Parameters using Non-linear Response Models and Genetic Algorithm (로터 트랙 발란스(RTB) 파라미터 최적화를 위한 비선형 모델링 및 GA 기법 적용 연구)

  • Lee, Seong Han;Kim, Chang Joo;Jung, Sung Nam;Yu, Young Hyun;Kim, Oe Cheul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.989-996
    • /
    • 2016
  • This paper intends to develop the rotor track and balance (RTB) algorithm using the nonlinear RTB models and a real-coded hybrid genetic algorithm. The RTB response data computed using the trim solutions with variation of the adjustment parameters have been used to build nonlinear RTB models based on the quadratic interpolation functions. Nonlinear programming problems to minimize the track deviations and the airframe vibration responses have been formulated to find optimum settings of balance weights, trim-tab deflections, and pitch-link lengths of each blade. The results are efficiently resolved using the real-coded genetic algorithm hybridized with the particle swarm optimization techniques for convergence acceleration. The nonlinear RTB models and the optimized RTB parameters have been compared with those computed using the linear models to validate the proposed techniques. The results showed that the nonlinear models lead to more accurate models and reduced RTB responses than the linear counterpart.

Dynamic Characteristic Analysis Procedure of Helicopter-mounted Electronic Equipment (헬기 탑재용 전자장비의 동특성 분석 절차)

  • Lee, Jong-Hak;Kwon, Byunghyun;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.759-769
    • /
    • 2013
  • Electronic equipment has been applied to virtually every area associated with commercial, industrial, and military applications. Specifically, electronics have been incorporated into avionics components installed in aircraft. This equipment is exposed to dynamic loads such as vibration, shock, and acceleration. Especially, avionics components installed in a helicopter are subjected to simultaneous sine and random base excitations. These are denoted as sine on random vibrations according to MIL-STD-810F, Method 514.5. In the past, isolators have been applied to avionics components to reduce vibration and shock. However, an isolator applied to an avionics component installed in a helicopter can amplify the vibration magnitude, and damage the chassis, circuit card assembly, and the isolator itself via resonance at low-frequency sinusoidal vibrations. The objective of this study is to investigate the dynamic characteristics of an avionics component installed in a helicopter and the structural dynamic modification of its tray plate without an isolator using both a finite element analysis and experiments. The structure is optimized by dynamic loads that are selected by comparing the vibration, shock, and acceleration loads using vibration and shock response spectra. A finite element model(FEM) was constructed using a simplified geometry and valid element types that reflect the dynamic characteristics. The FEM was verified by an experimental modal analysis. Design parameters were extracted and selected to modify the structural dynamics using topology optimization, and design of experiments(DOE). A prototype of a modified model was constructed and its feasibility was evaluated using an FEM and a performance test.

Pre-service Chemistry Teachers’ Understanding of the Potential Energy Curve (퍼텐셜 에너지 곡선에 대한 예비 화학 교사들의 이해 조사)

  • Park, Jong-Yoon;Kim, Eun-Kyoung
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.6
    • /
    • pp.508-519
    • /
    • 2015
  • In this study, the pre-service chemistry teachers’ understanding of potential energy curve was investigated. The subjects were 24 junior students and 26 senior students studying chemistry education in a college of education. A concept questionnaire consisted of thought experiments with different initial conditions was developed to survey the pre-service teachers’ conceptions of potential energy curve. The survey results showed that the pre-service chemistry teachers had difficulties to accept the negative values for potential energy and total energy. And they knew the mechanical energy conservation but they could not apply it properly to the thought experiment situations given in the questionnaire. Also they had the knowledge about the direction of force exerted between the two balls, but many of them believed that the balls would stop moving at the bottom of potential energy curve well. In addition, it was discovered that few pre-service teachers could relate the thought experiments to the chemical bonding, the liquefaction of gas, and the molecular vibration.