• Title/Summary/Keyword: 기체역학적 해석

Search Result 50, Processing Time 0.029 seconds

Numerical Modelling of One Dimensional Gas Injection Experiment using Mechanical Damage Model: DECOVALEX-2019 Task A Stage 1A (역학손상모델을 이용한 1차원 기체 주입 시험 모델링: 국제공동연구 DECOVALEX-2019 Task A Stage 1A)

  • Lee, Jaewon;Lee, Changsoo;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.29 no.4
    • /
    • pp.262-279
    • /
    • 2019
  • In the engineering barriers of high-level radioactive waste disposal, gases could be generated through a number of processes. If the gas production rate exceeds the gas diffusion rate, the pressure of the gas increases and gases could migrate through the bentonite buffer. Because people and the environment can be exposed to radioactivity, it is very important to clarify gas migration in terms of long-term integrity of the engineered barrier system. In particular, it is necessary to identify the hydro-mechanical mechanism for the dilation flow, which is a very important gas flow phenomenon only in medium containing large amounts of clay materials such as bentonite buffer, and to develop and validate new numerical approach for the quantitative evaluation of the gas migration phenomenon. Therefore, in this study, we developed a two-phase flow model considering the mechanical damage model in order to simulate the gas migration in the engineered barrier system, and validated with 1D gas flow modelling through saturated bentonite under constant volume boundary conditions. As a result of numerical analysis, the rapid increase in pore water pressure, stress, and gas outflow could be simulated when the dilation flow was occurred.

메탄 변환을 위한 아크 플라즈마 반응로의 전산해석

  • Min, Byeong-Il;Choe, Su-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.190.2-190.2
    • /
    • 2016
  • 메탄은 변환을 통해 아세틸렌 및 수소와 같은 에너지 생산에 보다 유용한 기체를 얻을 수 있다. 메탄의 열분해 온도는 약 1,200 K로 알려져 있으며, 그 이상의 고온 환경 및 첨가물을 제공한 경우 효과적인 변환을 기대할 수 있다. 이러한 고온 환경 및 화학반응을 제공할 수 있는 시스템으로 열플라즈마 반응로가 있다. 일반적인 열플라즈마는 아크 방전이나 고주파 유도결합 방전으로 플라즈마 발생기에서 발생시킨 이온화된 열유체로 10,000 K 이상의 초고온과 최대 수천 m/s의 특성을 가지고 있다. 본 연구에서는 효율적인 메탄 변환을 위한 저전력 아크 플라즈마 발생기 및 반응로 내부의 온도 및 속도장을 전산모사하여 열유동 특성을 분석하였다. 아크 플라즈마 토치 영역의 전산해석은 전자기적 현상과 고온 열유동의 유체역학적 현상이 함께 작용하므로 기존에 사용되고 있는 전산유체 역학적인 방법론에 전자기적 현상에 대한 보존 방정식이 결합된 자기유체역학(Magnetohydrodynamic, MHD)방법을 이용하였고, 반응기 내부의 복잡한 열유동은 안정적인 계산이 가능한 상용 전산 유체역학(Computational Fluids Dynamics, CFD) 코드를 MHD 코드를 이용한 전산해석 결과 및 고온 물성치와 결합하여 해석하였다. 전산해석에 사용된 운전 변수로는 방전기체인 아르곤과 수소의 전체 유량을 45 L/min 으로 고정하고 수소의 비율을 0%, 6%, 12.5%, 20%로 하였으며, 각 유량 조건에서 입력 전력을 0.7 ~ 2.5 KW로 변화시켜 전체 15종의 운전조건에 따른 전산해석을 수행하여 각각의 운전변수에 따라 입력전력 기준 오차 1 ~ 28%에 해당하는 결과를 도출하였다. 본 연구를 통해 개발된 전산해석 방법을 이용하여 다양한 조건에서 아크 플라즈마 반응로 내부의 온도 및 속도장에 대한 전산해석 결과를 제시하였고, 효율적인 메탄 변환 공정을 개발하기 위한 아크 플라즈마 반응로의 설계조건 및 운전 조건을 제시할 수 있는 기반을 확보하였다.

  • PDF

Numerical Modelling for the Dilation Flow of Gas in a Bentonite Buffer Material: DECOVALEX-2019 Task A (벤토나이트 완충재에서의 기체 팽창 흐름 수치 모델링: DECOVALEX-2019 Task A)

  • Lee, Jaewon;Lee, Changsoo;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.382-393
    • /
    • 2020
  • The engineered barrier system of high-level radioactive waste disposal must maintain its performance in the long term, because it must play a role in slowing the rate of leakage to the surrounding rock mass even if a radionuclide leak occurs from the canister. In particular, it is very important to clarify gas dilation flow phenomenon clearly, that occurs only in a medium containing a large amount of clay material such as a bentonite buffer, which can affect the long-term performance of the bentonite buffer. Accordingly, DECOVALEX-2019 Task A was conducted to identify the hydraulic-mechanical mechanism for the dilation flow, and to develop and verify a new numerical analysis technique for quantitative evaluation of gas migration phenomena. In this study, based on the conventional two-phase flow and mechanical behavior with effective stresses in the porous medium, the hydraulic-mechanical model was developed considering the concept of damage to simulate the formation of micro-cracks and expansion of the medium and the corresponding change in the hydraulic properties. Model verification and validation were conducted through comparison with the results of 1D and 3D gas injection tests. As a result of the numerical analysis, it was possible to model the sudden increase in pore water pressure, stress, gas inflow and outflow rate due to the dilation flow induced by gas pressure, however, the influence of the hydraulic-mechanical interaction was underestimated. Nevertheless, this study can provide a preliminary model for the dilation flow and a basis for developing an advanced model. It is believed that it can be used not only for analyzing data from laboratory and field tests, but also for long-term performance evaluation of the high-level radioactive waste disposal system.

Numerical Analysis of Rarefied Hypersonic Flows Using Generalized Hydrodynamic Models for Diatomic Gases (이원자 기체 일반유체역학 모델을 이용한 극초음속 희박 유동장 해석)

  • Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.32-40
    • /
    • 2002
  • The study of nonlinear gas transport in rarefied condition or associated with the microscale length of the geometry has emerged as an interesting topic in recent years. Along with the DSMC method, several fluid dynamic models that come under the general category of the moment method or the Chapman-Enskog method have been used for this type of problem. In the present study, on the basis of Eu's generalized hydrodynamics, computational models for diatomic gases are developed. The rotational nonequilibrium effect is included by introducing excess normal stress associated with the bulk viscosity of the gas. The new models are applied to study the one-dimensional shock structure and the multi-dimensional rarefied hypersonic flow about a blunt body. The results indicate that the bulk viscosity plays a considerable role in fundamental flow problems such as the shock structure and shear flow. An excellent agreement with experiment is observed for the inverse shock density thickness.

Real Gas Speeds of Sound and Approximate Riemann Solver (실제 기체 음속과 근사 리만 해법)

  • Moon, Seong-Young;Han, Sang-Hoon;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • The definition of the speed of sound is reexamined since it is crucial in the numerical analysis of compressible real gas flows. The thermodynamic speed of sound (TSS), $a_{th}$, and the characteristic speed of sound (CSS), $a_{ch}$, are derived using generalized equation of state (EOS). It is found that the real gas EOS, for which pressure is not linearly dependent on density and temperature, results in slightly different TSS and CSS. in this formalism, Roe's approximate Riemann solver was derived again with corrections for real gases. The results show a little difference when the speeds of sound are applied to the Roe's scheme and Advection Upstream Splitting Method (AUSM) scheme, but a numerical instability is observed for a special case using AUSM scheme. It is considered reasonable to use of CSS for the mathematical consistency of the numerical schemes. The approach is applicable to multi-dimensional problems consistently.

A Comparison between Various CFD Solvers for Analysis on Thermal Load in Smart Farm(Fluent, Open-FOAM, Blender) (스마트팜 열부하 분석을 위한 CFD 해석 도구 비교)

  • Lee, Jun-Yeob;Oh, Jong-woo;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.170-170
    • /
    • 2017
  • 기후변화 따른 스마트팜 돈사 외부 환경의 변화에 대응하고, 사육 환경을 능동적으로 개선하기 위한 연구가 수행 중이다. 돈사 내 열전달 요소 간 상호 역학성 분석을 위해서 고려해야할 사항은 입기구, 보온 등, 열풍기, 단열제, 위치, 방향, 돈사의 연평균 온도, 습도, 연중 일사량, 가축의 열복사 등 상호 복잡하게 연관되어 있는 물리량이다. 돈사 전체 열손실, 자연발생 에너지량, 강제발생 에너지량, 난방용량 등을 고려한 순간 열부하 산정을 위한 여러 방법 중 우선적으로 CFD(Computational Fluid Dynamics)를 이용하였다. 순간 열부하 산정을 위한 해석 도구 선정에 있어서 다양한 유체 및 기체 전산 유체역학 Solver(Fluent, Open-FOAM, Blender)를 고려하였다. 공간 Mech를 수행하기 위한 도구로는 공개 소프트웨어 인 FreeFem++ 3.51-4 (http://www.freefem.org)를 이용하였다. 이 과정에서 일부 기체 (암모니아)의 농도를 난수로 변화시키는 기법을 적용하여 가상적으로 돈사의 환경을 Pseudo 시뮬레이션 하였다. 결과적으로 Fluent에 비하여 OpenFOAM을 이용하여 얻은 열유동의 방향(속도)과 크기 백터가 상대적으로 크게 나타났다. Fluent가 시계열 상에서 혼합 기체 물리량 변화를 무시할 수 있는 안정되고 균일한 환경에 적합하기 때문인 것으로 판단되었다. Blender의 경우 Lattice Boltzmann methods 과 Smoothed-particle hydrodynamics 방법을 이용한 유체/입자 동력학 모델링을 제공함에 있어 시각적 효과를 강조하는 기능에 중점을 두었다. Fluent와 Blender에서 제공하는 해석 연산 모듈의 정확성 검증을 위해선 공간 분해능을 높인 정밀 계측 시스템을 이용하여 검증할 필요가 있다. Open-FOAM를 이용한 열부하 분석 수행이 상대적으로 높은 절대값을 보이는 특성은 열부하 제어 시스템의 Overshoot를 유발할 가능성이 있으므로 이에 대한 해석 모델의 보정이 추가적으로 필요할 것이다. CFD의 한계인 시간 복잡도를 낮추고 상대적으로 높은 시계열 분해능을 확보할 경우 돈사 내 환기시스템에 맞는 소요 환기량 실시간 산정이 가능해지고 외부기상 및 돈사내부 복사열을 활용함과 동시에 돈군 순환에 상응하는 실시간 열부하 관리 시스템 도출이 가능할 것이다.

  • PDF

A Simulation Study on the Clamshell-type Missile Airframe Separation (크램쉘형 유도탄 기체분리 시뮬레이션 연구)

  • Kim, Goo;Hur, Ki-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.375-383
    • /
    • 2008
  • Design of a weapon-carrier type of missile requires to provide a highly reliable mechanism of airframe separation and air stabilizer deployment which enables the safe release of payload at high-speed flight conditions. This mechanism is characterized by a relative dynamic motion of multiple separated bodies, proceeding as swiftly as hundreds of milli-seconds, so that the use of modeling & simulation(M&S)techniques could play a crucial role in the design. This paper presents an M&S technique which has been developed for a design of anti-submarine missile employing a clamshell type of airframe separation, and shows some major results of simulation compared to available flight test results. Emphasis of the current study was laid on a proper balance between the quick calculation, which is essential for practical design application, and the credibility of the results.

A Study on CFD Analysis of Internal Flow for GaN Growth Reactor (CFD를 이용한 GaN 성장로 내부 유동해석 연구)

  • Jung, Eui-Man;Kwon, Hey-Lim;Choi, Joo-Ho;Jang, Seok-Pil;Jang, Hyun-Sool;Lee, Hae-Yong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.618-619
    • /
    • 2010
  • LED는 기존의 발광원에 비해 훨씬 높은 파워와 효율성으로 인해 최근 들어 각종 조명이나 교통신호 등에서 사용이 급증하고 있다. LED 재료를 위해 지금까지 여러가지가 연구되어 왔는데, 갈륨 질화물 (Gallium Nitride, GaN)에 기반한 시스템이 최근들어 가장 큰 관심을 받고 있다. GaN 방식은 열적으로 매우 안정성이 있고, 1.9 ~ 6.2 eV 범위의 넓은 밴드의 Gap, 그리고 인듐이나 알루미늄과 결합하여 청, 녹, 백색등의 다양한 빛을 발생할 수 있는 장점을 가지고 있다. 예를 들어 청색 LED는 광학 방식의 기록매체에, 백색 LED는 기존의 조명램프의 대체용으로 활용이 가능하다. 이러한 장점 덕분에 GaN기반 LED 시장은 1994년에 최초로 상용화 된 이래 최근 급격한 성장을 보여 왔다. 그러나 GaN은 다른 III~V 타입의 반도체 재료와는 달리 재료가 성장하기 위해 사파이어와 같은 별도의 기판을 필요로 하는 문제가 있다. 이것은 결국 전위발생과 같은 격자의 부조화 같은 문제를 야기하여 결국 LED의 성능을 떨어뜨리는 요인이 된다. 이러한 문제를 해결하기 위해 HVPE(Hydride Vapor Phase Epitaxy) 방법이 개발되었는데, 이 방법은 시간당 100 미크론의 매우 빠른 성장속도로 높은 두께의 레이어를 만드는 장점이 있다. 이렇게 성장된 GaN 레이어는 베이스 기판에서 쉽게 분리되어 활용이 가능하다. 그러나 HVPE 기술은 성장 공정에서 두께를 균일하게 만들도록 제어하는 것이 매우 어렵다는 문제가 있다. 따라서 HVPE 방식에서는 이러한 조건을 만족시키기 위해 반응현상에 대한 물리적 해석을 토대로 공정조건을 정밀하게 설계해야 한다. 이를 위해 최근에 실험 또는 시뮬레이션을 활용하여 이러한 공정조건을 향상시키기 위한 여러 연구가 진행되었다. 본 연구에서는 이러한 연구의 일환으로 반응로에 투입되는 여러 기체의 유량과 존별 주변온도 조건을 입력변수로 하고, 이들이 GaN 성장에 미치는 영향을 분석하였다. HVPE 시스템에서 가장 이상적인 목표는 반응기체가 층류유동을 유지하면서 대부분의 반응이 기판위에서 이뤄지며, 기판위에서 성장되는 재료의 두께가 균일하게 되는 것이다. 입력변수들이 이러한 결과에 어떠한 영향을 미치는 지 분석하기 위해 전산유체역학(CFD, Computational Fluid Dynamics)을 수행하는 상용코드 FLUENT를 사용하였다. 보다 실제에 가까운 해석을 위해서는 기체간의 화학반응을 포함해야 하나, 해석의 편의와 효율을 위해 본 연구에서는 열 및 유동해석만을 수행하였다. 한편 실제 반응로의 우수성은 성장속도와 두께분포의 균일도를 통해 평가된다. CFD 해석을 통해 이들을 분석하기 위해 기존에 수행한 실험조건을 해석하고 해석결과의 유동패턴/압력분포를 실험결과의 성장속도/두께분포와 비교하고, 이중에서 관련성이 높은 해석결과변수를 우수성 평가에 활용하였다. 기존의 실험결과를 토대로 이러한 중요 결과변수와 함께 이들에 대한 목표값이 도출되고 나면, 입력 공정조건 - 사용기체의 유량과 주변온도 조건 - 에 대해 실험계획(DOE,Design of Experiment)을 수립하고 목표성능을 구현하기 위한 최적설계를 수행할 수 있다. 일반적으로 CFD를 통해 최적의 설계나 공정조건을 탐색하는 작업은 1회의 CFD 계산시간이 매우 오래 소요되기 때문에 쉽지 않다. 그러나 본 연구에서는 CFD와 DOE의 적절한 조합을 통해 적은 수의 해석을 가지고도 원하는 결과를 효율적으로 얻는 것이 가능함을 입증하고자 한다. 본 발표에서는 아직 이러한 연구가 완성되지 않은 시점에서 제반 연구개요를 소개하고 현 시점까지의 연구 결과 및 향후 계획을 소개하고자 한다.

  • PDF

A Study of the Gas Flow through a LNG Safety Valve (LNG 안전밸브를 지나는 기체 유동에 관한 연구)

  • Lee, Jun-Hee;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.19-25
    • /
    • 2007
  • A LNG safety valve functions to control a constant pressure inside the LNG line of transportation, and the flow through it accompanies with noise and vibration which affect adversely on the system. The present study aims at understanding the flow physics of LNG safety valve for a practical design of LNG safety valve. A computational work using the two-dimensional, axisymmetric, compressible, Navier-Stokes equations is carried out to simulate the gas flow through the LNG safety valve, and compared with the theoretical results. It is found that the shape of valve sheet and the gap size are the key parameters in determining the gas dynamic forces on the valve sheet, and there exists a distance between nozzle exit and valve sheet in which the thrust coefficient at the valve sheet increases abruptly.

레이놀즈수 변화에 따른 대기압 플라즈마 제트의 방전 특성 변화

  • Kim, Yun-Jung;Jin, Se-Hwan;No, Jun-Hyeong;Song, Seo-Jin;Lee, Ye-Gwon;Choe, Min-Seong;Kim, Hui-Ju;Gwon, Gi-Cheong;Jo, Gwang-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.240.1-240.1
    • /
    • 2014
  • 대기압 플라즈마 제트 장치에 주입되는 기체의 유량 변화에 따른 방전 특성을 유체역학적으로 해석하였다. 장치에 주입되는 기체의 유량 변화는 레이놀즈수에 의한 유체 흐름의 상태 변화와 베르누이 정리에 의한 압력 변화를 동반한다. 유리관에 주입되는 기체의 레이놀즈수가 Re<2000이면 층류이며 Re>4000이면 난류, 2000

  • PDF