• 제목/요약/키워드: 기존 알고리즘

검색결과 12,333건 처리시간 0.036초

교육시설 유지관리 BIM 기반 공종 패키지 플래닝 프레임워크 (A Planning Framework of BIM-based Work-Type Packaging for Educational Facility Maintenance)

  • 배창준;박상헌;윤선재;이미영;구교진
    • 한국산학기술학회논문지
    • /
    • 제21권12호
    • /
    • pp.200-210
    • /
    • 2020
  • 교육시설 유지관리는 교육환경개선사업의 12개 단위사업별로 취합하고, 심의를 통해 최종 유지보수 대상이 선정된다. 실태조사의 평가점수로 우선순위가 결정되고 순차적으로 예산을 편성하여 진행된다. 우선순위는 유지보수공사 수행을 위한 일정표이자 발주를 위한 중요한 기준이 된다. 예산이 산출되는 실태조사단계와 우선순위 기준의 개별적 유지 보수공사는 몇 가지 한계가 있다. 학교시설관리자는 물량산출에 한계가 있으며, 부정확한 소요예산이 도출되는 결과로 이어진다. 우선순위 기준의 유지보수공사는 개별적으로 분리 발주되어 불필요한 공사기간이 반영된다. 학생들은 학습 환경에서 불편함이 발생하고, 안전을 침해하는 기간이 늘어난다. 본 연구는 실태조사단계의 BIM 활용과 공종 패키지 플래닝 프레임워크를 제안하였다. BIM은 유지보수 대상의 물량정보를 지원하여 예산산출에 활용되며, 보수이력과 점검 결과가 연계하여 평가점수를 도출한다. 공종 패키지 알고리즘은 단위사업별 예산배정 구간을 구분하고, 동일한 공간과 부위에 투입된 공종이 그룹화된 결과를 도출한다. 사례적용 결과 공사기간은 기존 대비 약 37.4% 단축이 가능하였으며, 실무자 면담을 통해 공종 그룹화 대상을 도출 과정에서 활용성이 높은 것으로 평가되었다.

전지구 기후 재분석자료 및 인공지능을 활용한 남한의 마늘 생산량 장기예측 (Long Range Forecast of Garlic Productivity over S. Korea Based on Genetic Algorithm and Global Climate Reanalysis Data)

  • 조세라;이준리;심교문;김용석;허지나;강민구;최원준
    • 한국농림기상학회지
    • /
    • 제23권4호
    • /
    • pp.391-404
    • /
    • 2021
  • 본 연구에서는 최신의 연구 트렌드인 빅데이터와 인공지능을 농업분야에 접목하여 유전자 알고리즘(GA)과 전지구 기후 재분석 자료를 활용한 마늘 생산량의 장기 예측 모형을 개발하고 그 예측성능을 평가해 보았다. 해당 모형은 마늘의 파종량을 수정할 수 있는 11월에 예측 자료를 생산하므로, 마늘의 생산 시기와 시간공간적으로 떨어진 전지구 기후 재분석 자료로부터 마늘생산량의 예측 인자로 활용할 수 있는 시그널을 찾아 장기적 마늘 생산량 예측에 활용하였다. 그 결과 결정론적 예측과 확률론적 예측 모두 마늘 생산량의 경년변동성을 통계적으로 99% 신뢰수준에서 관측과 유사하게 모의하였으며, 범주형 예측에서도 이분위 예측에서 93.3%, 삼분위 예측에서 73.3%의 적중률을 보이며 우수한 예측 성능을 나타내었다. 또한, 예측인자들 사이의 선형 및 비선형적 관계를 모두 고려하는 GA방법을 사용하였을 때, 선형적 앙상블 방법을 적용하였을 때 보다 높은 예측성능과 안정적인 예측결과를 보이는 것을 알 수 있다. 본 연구에서 개발된 마늘 생산량 예측 모형은 기존의 단기예측 위주의 농산물 생산량 예측의 한계를 극복하고 한 해의 농사가 시작되기 전 잠재 생산량을 전망 정보를 생산하여 농산물의 수요·공급 및 가격안정화를 위한 장기적 계획을 수립하는 것에 도움이 될 것으로 생각된다.

Dantzig 위험을 사용한 포트폴리오 최적화 선형계획법 모형 (Linear programming models using a Dantzig type risk for portfolio optimization)

  • 안다영;박세영
    • 응용통계연구
    • /
    • 제35권2호
    • /
    • pp.229-250
    • /
    • 2022
  • 포트폴리오 최적화 이론의 초석인 Markowitz의 평균-분산 포트폴리오 모형 (1952)이 발표된 이후로 많은 분야에서 포트폴리오 최적화에 대한 다양한 연구가 진행되었다. 기존의 평균-분산 포트폴리오 모형은 주로 목적함수나 제약식에 비선형 볼록 형태를 포함한다. 이를 Dantzig의 선형계획법을 적용하여 선형으로 변환시켜 알고리즘 계산 시간을 효율적으로 감소시켰다. 또한 시계열 데이터 특성을 반영하여 시간에 따른 가중치를 고려하는 가우시안 커널 가중치 공분산을 제안하였다. 여기에 일정 부분은 벤치마크에 투자하고 나머지는 포트폴리오 최적화 모형으로 제안된 자산들에 투자하는 퍼터베이션 방법을 적용하여 평균 수익률과 위험도를 목적에 맞게 조절하도록 하였다. 또한, 본 논문에서는 안정적이면서도 적은 자산을 보유하게 포트폴리오를 구성하여 관리비용(management costs)과 거래비용(transaction costs)를 낮출 수 있는 Dantzig-type 퍼터베이션 포트폴리오 모형을 제안하였다. 제안된 모형의 성능은 5개의 실제 데이터 세트로 벤치마크 포트폴리오와 비교 분석하여 평가하였다. 최종적으로 제안한 최적화 모형은 벤치마크보다 높은 기대수익률이나 낮은 위험도를 갖는 포트폴리오를 구성하여 퍼터베이션 목적을 만족하며, 투자한 자산의 수와 시간에 따른 자산 구성 변화를 일정 수준 이하로 조절하는 희소하며 안정적인 결과를 얻었다.

객체 인식 기술을 활용한 시각장애인 자동 보행 안내 (Automatic Walking Guide for Visually Impaired People Utilizing an Object Recognition Technology)

  • 장재영;이규
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권2호
    • /
    • pp.115-121
    • /
    • 2022
  • 도시가 복잡해짐에 따라 보행도로에는 시각장애인들의 보행을 방해하는 다양한 장애물들이 점차 많아지고 있다. 대표적으로 볼라드, 주차차단기, 입간판 등을 예로 들 수 있는데, 이들은 일반적으로 보행에 심각한 방해가 되지 않지만, 시각장애인들에게는 오히려 충돌로 인한 부상의 위험을 발생시킬 수 있다. 이를 해결하기 위해 GPS를 비롯한 다양한 장치를 이용한 방법들이 제안되었으나, 장소의 제약, 장애물 감지의 부정확성, 특수한 장치에 대한 요구 등의 문제로 인해 대중적으로 사용하기에는 한계를 지니고 있다. 본 논문에서는 최신 스마트폰에 기본적으로 장착된 간단한 장치만을 활용하여 보행 중에 출현하는 각종 장애물을 자동인식하고 충돌의 위험을 사전에 알려주는 방법을 제안한다. 제안된 방법은 전방을 촬영한 동영상에서 장애물의 종류뿐만 아니라 거리를 파악하여 보행인에게 실시간으로 안내해줌으로써 장애물과의 충돌을 방지하도록 지원한다. 이를 위해 최신 딥러닝 알고리즘을 이용한 객체 인식 기술을 활용하여 장애물 출현 여부와 장애물의 종류를 인식하였다. 또한, 보행자의 보폭을 이용한 이동 거리를 계산하는 방법을 응용하여 장애물과의 거리를 측정하였다. 제안된 방법은 기존의 시각장애인을 위한 보행 안내 기술과 비교하여 실내외 장소에 구애받지 않으면서 간단한 장치만으로도 정확한 보행 안내가 가능하다는 장점을 갖는다.

패치 특징 코어세트 기반의 흉부 X-Ray 영상에서의 병변 유무 감지 (Leision Detection in Chest X-ray Images based on Coreset of Patch Feature)

  • 김현빈;전준철
    • 인터넷정보학회논문지
    • /
    • 제23권3호
    • /
    • pp.35-45
    • /
    • 2022
  • 현대에도 일부 소외된 지역에서는 의료 인력의 부족으로 인해 위·중증 환자에 대한 치료가 지연되는 경우가 많다. 의료 데이터에 대한 분석을 자동화하여 의료 서비스의 접근성 문제 및 의료 인력 부족을 해소하고자 하는 연구가 계속되고 있다. 컴퓨터 비전 기반의 진료 자동화는 훈련 목적에 대한 데이터 수집 및 라벨링 작업에서 많은 비용이 요구된다. 이러한 점은 희귀질환이나 시각적으로 뚜렷하게 정의하기 어려운 병리적 특징 및 기전을 구분하는 작업에서 두드러진다. 이상 탐지는 비지도 학습 전략을 채택함으로써 데이터 수집 비용을 크게 절감할 수 있는 방법으로 주목된다. 본 논문에서는 기존의 이상 탐지 기법들을 기반으로, 흉부 X-RAY 영상에 대해 이상 탐지를 수행하는 방법을 다음과 같이 제안한다. (1) 최적 해상도로 샘플링된 의료 영상의 색상 범위를 정규화한다. (2) 무병변 영상으로부터 패치 단위로 구분된 중간 수준 특징 집합을 추출하여 그 중 높은 표현력을 가진 일부 특징 벡터들을 선정한다. (3) 최근접 이웃 탐색 알고리즘을 기반으로 미리 선정된 무병변(정상) 특징 벡터들과의 차이를 측정한다. 본 논문에서는 PA 방식으로 촬영된 흉부 X-RAY 영상들에 대한 제안 시스템의 이상 탐지 성능을 세부 조건에 따라 상세히 측정하여 제시한다. PadChest 데이터세트로부터 추출한 서브세트에 대해 0.705 분류 AUROC를 보임으로써 의료 영상에 대한 이상 탐지 적용의 효과를 입증하였다. 제안 시스템은 의료 기관의 임상 진단 워크플로우를 개선하는 데에 유용하게 사용될 수 있으며, 의료 서비스 접근성이 낮은 지역에서의 조기 진단을 효율적으로 지원할 수 있다.

Extra Tree와 ANN을 활용한 이상 탐지 및 공격 유형 분류 메커니즘 (Anomaly detection and attack type classification mechanism using Extra Tree and ANN)

  • 김민규;한명묵
    • 인터넷정보학회논문지
    • /
    • 제23권5호
    • /
    • pp.79-85
    • /
    • 2022
  • 이상 탐지는 일반적인 사용자들의 데이터 집합 속에서 비정상적인 데이터 흐름을 파악하여 미리 차단하는 방법이다. 기존에 알려진 방식은 이미 알려진 공격의 시그니처를 활용하여 시그니처 기반으로 공격을 탐지 및 방어하는 방식인데, 이는 오탐율이 낮다는 장점이 있지만 제로 데이 취약점 공격이나 변형된 공격에 대해서는 매우 취약하다는 점이 문제점이다. 하지만 이상 탐지의 경우엔 오탐율이 높다는 단점이 존재하지만 제로 데이 취약점 공격이나 변형된 공격에 대해서도 식별하여 탐지 및 차단할 수 있다는 장점이 있어 관련 연구들이 활발해지고 있는 중이다. 본 연구에서는 이 중 이상 탐지 메커니즘에 대해 다뤘다. 앞서 말한 단점인 높은 오탐율을 보완하며 그와 더불어 이상 탐지와 분류를 동시에 수행하는 새로운 메커니즘을 제안한다. 본 연구에서는 여러 알고리즘의 특성을 고려하여 5가지의 구성으로 실험을 진행하였다. 그 결과로 가장 우수한 정확도를 보이는 모델을 본 연구의 결과로 제안하였다. Extra Tree와 Three layer ANN을 동시에 적용하여 공격 여부를 탐지한 후 공격을 분류된 데이터에 대해서는 Extra Tree를 활용하여 공격 유형을 분류하게 된다. 본 연구에서는 NSL-KDD 데이터 세트에 대해서 검증을 진행하였으며, Accuracy는 Normal, Dos, Probe, U2R, R2L에 대하여 각각 99.8%, 99.1%, 98.9%, 98.7%, 97.9%의 결과를 보였다. 본 구성은 다른 모델에 비해 우수한 성능을 보였다.

머신러닝 알고리즘을 이용한 온실 딸기 생산량 예측 (Prediction of Greenhouse Strawberry Production Using Machine Learning Algorithm)

  • 김나은;한희선;아룰모지엘렌체쟌;문병은;최영우;김현태
    • 생물환경조절학회지
    • /
    • 제31권1호
    • /
    • pp.1-7
    • /
    • 2022
  • 서부 경남 지역 중 딸기재배로 유명한 지역 40개 농가를 대상으로 한 조사에 따르면 국산품종 중에서 "설향"이 65.0%으로서 가장 선호하고 있는 것으로 나타났다. 그리고 현재의 농업은 4차 산업혁명으로 스마트팜(Smart Farm)의 기술이 더욱 발전하고 있는 실정이다. 그러나 각 생육단계가 어떤 상황일 때 딸기의 생산량이 최적에 달하는지 대한 기준이 없으며, 이러한 판단기준은 아직까지 스마트팜에 경험이 있는 농업인의 의사에 달려있다는 문제점이 있다. 따라서 본 연구에서는 딸기의 생육상황에 대한 생산량 예측을 통해 선진화된 스마트팜 시스템을 구축하고자 한다. 실험 장소는 경상남도 사천시의 딸기 농가에서 수행하였으며, 총 3곳을 대상으로 데이터 수집을 진행하였다. 실험 대상의 모든 온실 내에서 재배하는 딸기의 품종은 '설향'이다. 작물 데이터의 수집 항목은 작물의 엽수, 꽃수, 과실수, 초장, 잎의 길이, 엽록소 함량이며, 환경 데이터의 수집 항목은 온도, 습도, 조도이다. 기존의 농가 단위의 스마트팜의 문제점 보완 및 개선을 통하여 고품질의 작물 생장 상태를 유지하기 위해 K-fold 교차검증, Lasso 회귀분석, MAPE 검증을 통해 예측모델을 도출하였으며, MAPE 검증 결과 값으로 0.511(꽃 예측)과 0.488(과일 예측)의 값이 나타났다. 본 연구는 스마트팜 데이터 구축을 위해서는 AI를 통해 성장상태별 수확량을 예측하였으며, 이를 농가 및 농업 관련 기업에 활용해 농업 서비스가 편리할 것으로 판단된다.

벌통 내부 꿀벌 이동량 측정을 위한 벌집 입·출입 계수 시스템 연구 (A study on the honeycomb entry and exit counting system for measuring the amount of movement of honeybees inside the beehive)

  • 김준호;서희;한욱;정원기
    • 문화기술의 융합
    • /
    • 제7권4호
    • /
    • pp.857-862
    • /
    • 2021
  • 최근 급격한 기후변화로 인해 꿀벌의 생태계에도 많은 영향을 주고 있다. 꿀벌의 개체수 감소, 개화기의 변화로 인한 양봉 농가의 채밀에 막대한 영향을 주고 있다. 이에 따라 양봉에도 IoT 기술을 도입한 스마트 양봉에 관심이 집중되고 있다. 양봉의 특성에 따라 벌통안의 벌집을 육안으로 지속적 관찰이 불가능하고, 벌집안의 상태에 대하여 대부분 경험에 의한 지식에 의존하고 있는 실정이다. 특히, 벌통 내부에 꿀벌의 이동 경로와 이동량을 측정하는 부분에 대한 연구는 전무한 상황이다. 벌통 내부의 꿀벌의 이동에 대한 부분은 양봉에서 가장 중요한 분봉 시기를 예측할 수 있는 기본적인 정보를 제공할 수 있다. 본 연구에서는 꿀벌의 이동 경로를 파악하고 벌집(소비)간 입·출입 데이터를 실시간 측정하고 기록하는 장치를 제안한다. 본 연구에서 제안한 장치를 양봉 농가에서 활용할 수 있도록 기존 벌통의 벌집(소비) 규격에 맞춰서 개발했다. 개발방법은 꿀벌의 이동을 감지할 수 있는 포토 디텍터를 활용하여 16개의 이동통로를 구성하고 꿀벌의 이동상황을 실시간 감지할 수 있도록 했다. 이렇게 측정한 꿀벌의 이동상황을 활용하게 된다면 분봉시기를 놓치지 않기 위해 육안으로 봉군을 직접 관찰해야하는 문제를 해결할 수 있다. 나아가 꿀벌의 벌집 간 입출입 기록 데이터를 AI 알고리즘을 적용하면 자동으로 봉군 확장 시기를 예측할 수 있는 시스템 구현도 가능할 것이다.

좌표계산을 통해 동영상의 안면 특징점 분석을 중심으로 한 웹 기반 발표 태도 교정 프로그램 개발 (Development of a Web-based Presentation Attitude Correction Program Centered on Analyzing Facial Features of Videos through Coordinate Calculation)

  • 권기현;안수호;박찬정
    • 한국콘텐츠학회논문지
    • /
    • 제22권2호
    • /
    • pp.10-21
    • /
    • 2022
  • 학생들의 취업을 위한 면접 발표와 회사에서의 프로젝트 결과 발표 등과 같은 형식적인 발표 태도가 개선되려면 동료나 교수자의 관찰에 의한 방법 이외에 자동화된 방법은 드물다. 기존 연구에 따르면, 발표자의 안정적인 발화와 시선 처리가 발표에서의 전달력에 영향을 미친다고 한다. 또한, 본인 발표에 대한 적절한 피드백이 발표자의 발표 역량을 늘이는 효과가 있다는 연구도 있다. 본 연구에서는 이와 같은 교정의 긍정적 측면을 고려하여 대학생들의 잘못된 발표 습관과 태도를 동영상의 안면 분석을 통해 지능적으로 교정해 주는 프로그램을 개발하고 성능을 분석하였다. 개발하는 프로그램은 웹 기반으로 군말 사용 여부를 확인하고 안면 인식과 발표 내용 텍스트화를 통해 개발되었다. 이를 위해 군말 분류 인공지능 모델을 개발하였고, 동영상 객체 추출 후, 좌표에 기반으로 얼굴 특징점을 인식하였다. 이후 4,000개 안면 데이터를 이용해 Teachable Machine에서 안면 인식한 경우와 본 연구의 알고리즘 성능을 비교·분석하였다. 프로그램을 이용해 발표 태도를 자기스스로 교정하여 발표자들에게 도움을 준다.

차원 축소 진동 신호를 이용한 신경망 기반 선박 엔진 고장진단에 관한 연구 (A study on fault diagnosis of marine engine using a neural network with dimension-reduced vibration signals)

  • 심기찬;이강수;변성훈
    • 한국음향학회지
    • /
    • 제41권5호
    • /
    • pp.492-499
    • /
    • 2022
  • 본 연구에서는 진동 신호의 차원 감소가 선박 엔진의 고장진단에 미치는 영향을 실험적으로 분석한 결과를 제시한다. 주성분 분석을 이용하여 513차원의 진동 신호를 1 ~ 15차원의 저차원 신호로 변환하여 차원 변화에 따른 고장진단 정확도의 변화를 관찰하였다. 실제 규모의 선박용 발전기 디젤 엔진에서 측정된 진동 신호를 사용하고, integrated gradients와 feature permutation 기법의 두 가지 변수 중요도 분석 알고리즘을 사용하여 차원 축소 신호의 기여도를 정량적으로 평가하였다. 실험 데이터 분석 결과, 사용하는 차원의 수가 증가할수록 결함 진단의 정확도가 향상되는 것으로 나타났다. 차원이 10 이상에 다다르면 거의 모든 고장상태가 정확하게 분류되었으며, 이는 고장진단 정확도를 저하시키지 않으면서도 진동 신호의 차원수를 크게 줄일 수 있음을 보여준다. 변수 중요도 분석에서도 차원 축소 주성분이 기존 통계적 특성보다 더 높은 기여도를 보였으며, 차원 축소된 진동 스펙트럼이 고장진단에 효과적으로 사용될 수 있음을 확인하였다.