• Title/Summary/Keyword: 기저유출비

Search Result 65, Processing Time 0.024 seconds

A Study on the Base Flow Recession Curve Development in the Ssangchi Basin of the Sumjin River (섬진강 쌍치유역의 기저유출 감수곡선식 개발에 관한 연구)

  • 김경수;조기태
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.66-72
    • /
    • 2000
  • The purpose of this study is establish a recession curve for low flow discharge in the Ssangchi basin. For this study, we selected 34 recession segments and calculated recession constants and initial discharges. The average initial discharge is 0.40 ㎥/sec and the recession constant is 0.86. With using the initial discharge and the recession constant, We got the non-linear recession cure equation. This non-linear equation is more reasonable fit than the linear equation of the recession curve for low flow.

  • PDF

Analysis of Rainfall-Runoff Characteristics in Gokgyochun Basin Using a Runoff Model (유출모형을 이용한 곡교천 유역의 강우-유출 특성 분석)

  • Hwan, Byungl-Ki;Cho, Yong-Soo;Yang, Seung-Bin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.404-411
    • /
    • 2019
  • In this study, the HEC-HMS was applied to determine rainfall-runoff processes for the Gokgyuchun basin. Several sub-basins have large-scale reservoirs for agricultural needs and they store large amounts of initial runoff. Three infiltration methods were implemented to reflect the effect of initial loss by reservoirs: 'SCS-CN'(Scheme I), 'SCS-CN' with simple surface method(Scheme II), and 'Initial and Constant rate'(Scheme III). Modeling processes include incorporating three different methods for loss due to infiltration, Clark's UH model for transformation, exponential recession model for baseflow, and Muskingum model for channel routing. The parameters were calibrated using an optimization technique with trial and error method. Performance measures, such as NSE, RAR, and PBIAS, were adopted to aid in the calibration processes. The model performance for those methods was evaluated at Gangcheong station, which is the outlet of study site. Good accuracy in predicting runoff volume and peak flow, and peak time was obtained using the Scheme II and III, considering the initial loss, whereas Scheme I showed low reliability for storms. Scheme III did not show good matches between observed and simulated values for storms with multi peaks. Conclusively, Scheme II provided better results for both single and multi-peak storms. The results of this study can provide a useful tool for decision makers to determine master plans for regional flood control management.

Application of land cover and soil information for improvement of HSPF modeling accuracy (HSPF 예측 정확도 제고를 위한 토지피복 및 토양 특성 자료의 활용)

  • Kang, Yooeun;Kim, Jaeyoung;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.823-833
    • /
    • 2022
  • This study aims to improve the runoff modeling accuracy of a basin using Hydrological Simulation Program-FORTRAN (HSPF) model by considering nonhomogeneous characteristics of a basin. By entering classified values according to the various types of land cover and soil to the parameters in HSPF-roughness coefficient (NSUR), infiltration (INFILT), and evapotranspiration (LZETP)- the heterogeneity of the Yongdam Dam basin was reflected in the model. The results were analyzed and compared with the one where the parameters were set as a single value throughout the basin. The flow rate and water quality simulation results showed improved results when classified parameters were used by land cover and soil type than when single values were used. The parameterization changed not only the flow rate, but also the composition ratio of each hydrologic components such as surface runoff, baseflow, and evapotranspiration, which shows the impact of the value set to a parameter on the entire hydrological process. This implies the importance of considering the heterogeneous characteristics of the land cover and soil of the basin when setting the parameters in a model.

Analysis of Correoation between Water Quality Parameters in Goljicheon Basin (골지천 유역의 수질항목간 상관관계 분석)

  • Yu, Na Yeong;Shin, Min Hwan;Park, Bae Kyung;Kang, Tae Sung;Kim, Jong Gun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.403-403
    • /
    • 2021
  • 비점오염물질은 강우에 의해 유출되며 계절적, 자연적 편차가 크게 나타나고, 오염원이 광범위하게 산재하고 있어 오염물질의 발생량과 부하량의 관리가 쉽지 않다. 따라서 비점오염원 관리지역은 오염물질이 하천에 미치는 수질 특성을 파악하는 것이 중요하다. 그러나 수질항목만으로 하천의 수질 특성을 파악하기에는 어려움이 있으며, 수질 특성을 파악하기 위해 다양한 분석방법이 필요하다. 본 연구에서는 비점오염원 관리지역 중 골지천 유역의 수질 특성을 파악하기 위해 통계분석 기법을 활용하여 수질항목간의 상관관계를 분석하고자 하였다. 2017년부터 2019년까지 골지천 유역 내 5개 지점에 대하여 비강우시 23회, 강우시 지점별 173회~196회의 모니터링 결과를 이용하였으며, EC, 탁도, BOD5, SS, T-N, T-P, TOC의 수질항목을 이용하여 Pearson 상관관계 분석을 실시하였다. 상관관계 분석 결과 비강우시 분석 결과 EC는 -0.06~-0.32, T-N은 0.19~0.37로 낮은 상관성을 갖는 것으로 나타났으며, EC와 T-N을 제외한 탁도와 BOD5, SS, T-P, TOC의 경우 서로 0.6 이상의 상관성을 갖는 것으로 나타났다. 특히, 탁도와 SS, T-P, T-P와 TOC는 0.9 이상의 높은 상관성을 갖는 것으로 나타났다. 강우시 분석 결과 EC는 비강우시와 유사하게 -0.07~-0.24로 낮은 상관성을 갖는 것으로 나타났으며, TOC를 제외한 탁도, BOD5, SS, T-N, T-P의 경우 서로 0.6 이상의 상관성을 갖는 것으로 나타났다. TOC의 경우 BOD5, SS와 0.6 이상의 상관성을 갖는 반면 탁도, T-N, T-P와는 0.45, 0.44, 0.57로 다른 항목에 비해 다소 낮은 상관성을 갖는 것으로 나타났다. 비강우시 T-N은 기저 유출에 의한 영향으로 높은 농도를 나타내 다른 항목에 비해 상관성이 낮은 것으로 나타났으며, 강우시에는 비점오염물질의 유입으로 인하여 모든 항목에서 비슷한 상관성을 보이는 것으로 나타났다. 본 연구 결과 탁도와 SS, T-P의 상관성이 비강우시 0.93, 강우시 0.78로 상당히 높은 것으로 나타나, 탁도를 측정하여 SS와 T-P로 환산하여 측정하는 방법에 대한 기초자료로 활용될 수 있을 것으로 판단된다. 그러나 연구 유역의 지형적 특성이 배제되었기 때문에 추후에 이를 반영한 연구가 필요할 것으로 판단된다.

  • PDF

Evaluation of multi-objective PSO algorithm for SWAT auto-calibration (다목적 PSO 알고리즘을 활용한 SWAT의 자동보정 적용성 평가)

  • Jang, Won Jin;Lee, Yong Gwan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.9
    • /
    • pp.803-812
    • /
    • 2018
  • The purpose of this study is to develop Particle Swarm Optimization (PSO) automatic calibration algorithm with multi-objective functions by Python, and to evaluate the applicability by applying the algorithm to the Soil and Water Assessment Tool (SWAT) watershed modeling. The study area is the upstream watershed of Gongdo observation station of Anseongcheon watershed ($364.8km^2$) and the daily observed streamflow data from 2000 to 2015 were used. The PSO automatic algorithm calibrated SWAT streamflow by coefficient of determination ($R^2$), root mean square error (RMSE), Nash-Sutcliffe efficiency ($NSE_Q$), and especially including $NSE_{INQ}$ (Inverse Q) for lateral, base flow calibration. The results between automatic and manual calibration showed $R^2$ of 0.64 and 0.55, RMSE of 0.59 and 0.58, $NSE_Q$ of 0.78 and 0.75, and $NSE_{INQ}$ of 0.45 and 0.09, respectively. The PSO automatic calibration algorithm showed an improvement especially the streamflow recession phase and remedied the limitation of manual calibration by including new parameter (RCHRG_DP) and considering parameters range.

The Estimation of Groundwater Recharge with Spatial-Temporal Variability at the Musimcheon Catchment (시공간적 변동성을 고려한 무심천 유역의 지하수 함양량 추정)

  • Kim Nam-Won;Chung Il-Moon;Won Yoo-Seung;Lee Jeong-Woo;Lee Byung-Ju
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.5
    • /
    • pp.9-19
    • /
    • 2006
  • The accurate estimation of groundwater recharge is important for the proper management of groundwater systems. The widely used techniques of groundwater recharge estimation include water table fluctuation method, baseflow separation method, and annual water balance method. However, these methods can not represent the temporal-spatial variability of recharge resulting from climatic condition, land use, soil storage and hydrogeological heterogeneity because the methods are all based on the lumped concept and local scale problems. Therefore, the objective of this paper is to present an effective method for estimating groundwater recharge with spatial-temporal variability using the SWAT model which can represent the heterogeneity of the watershed. The SWAT model can simulate daily surface runoff, evapotranspiration, soil storage, recharge, and groundwater flow within the watershed. The model was applied to the Musimcheon watershed located in the upstream of Mihocheon watershed. Hydrological components were determined during the period from 2001 to 2004, and the validity of the results was tested by comparing the estimated runoff with the observed runoff at the outlet of the catchment. The results of temporal and spatial variations of groundwater recharge were presented here. This study suggests that variations in recharge can be significantly affected by subbasin slope as well as land use.

A Stiudy on the Deveplopment of Algorithm for the Representative Unit Hydrograph of a Watershed as a Closed Linear System. (폐선형계로 본 유역대표 단위유량도의 유도를 위한 알고리즘의 개발에 관한 연구)

  • 김재한;이원환
    • Water for future
    • /
    • v.13 no.2
    • /
    • pp.35-47
    • /
    • 1980
  • An algorithm is developed to derive a representative I hr-unit hydrograph through an analysis of rainfall-runoff relations of a watershed as a closed system. For the base flow seperation of a flood hydrograph the multi-deflection method is proposed herein, which gace better results compared with those by the existing empirical methods. A modified $\Phi$index method is also proposed in this stidy to determine the time distribution rainfall excess of a rainstorm, which is essetially a modification of the commonly used $\Phi$index method of rainfall seperation. With the so-obtained rainfall excess hyetograph and the direct runoff hydrograph a trial and error computation of the ordinates of 1 hr-unit hydrograph was executed in such a manner that the synthesized flood hydrograph closely approximates the observed one, thus resulting a unit hydrograph of a piecewise exponential function type. To verify the validity of this study the 1 hr-unit hydrographs for the Imha and Dongchon in Nagdong River basin, and Yongdam in Geum River basin were derived by this algorithm, and the results were compared with those by the conventional synthetic unit hydrograph method and the Nakayasu method. Besides, the validity of this stiudy was also tested by comparing the observed hydrograph with the one computed by applying the unit hydrograph to a specific rainfall event. To generalize the result of this study a computer program, consisited of a main and three subprograns (for rainfall excess estimation, convolution summation, and sorting), is developed as a package, which is believed to be applicable to other watersheds for the similar purpose as those in this study.

  • PDF

Development and Application of the SWAT HRU Mapping Module for Estimation of Groundwater Pollutant Loads for Each HRU in the SWAT Model (SWAT HRU별 지하수 오염부하량 산정을 위한 SWAT HRU Mapping Module 개발 및 적용)

  • Ryu, Ji Chul;Mun, Yuri;Moon, Jongpil;Kim, Ik Jae;Ok, Yong Sik;Jang, Won Seok;Kang, Hyunwoo;Lim, Kyoung Jae
    • Journal of Environmental Policy
    • /
    • v.10 no.1
    • /
    • pp.49-70
    • /
    • 2011
  • The numerous efforts have been made in understanding generation and transportation mechanism of nonpoint source pollutants from agricultural areas. Also, the water quality degradation has been exacerbated over the years in many parts of Korea as well as other countries. Nonpoint source pollutants are transported into waterbodies with direct runoff and baseflow. It has been generally thought that groundwater quality is not that severe compared with surface water quality. However its impacts on groundwater in the vicinity of stream quality is not negligible in agricultural areas. The SWAT model has been widely used in hydrology and water quality studies worldwide because of its flexibilities and accuracies. The spatial property of each HRU, which is the basic computational element, is not presented. Thus, the SWAT HRU mapping module was developed in this study and was applied to the study watershed to evaluate recharge rate and $NO_3-N$ loads in groundwater. The $NO_3-N$ loads in groundwater on agricultural fields were higher than on forests because of commercial fertilizers and manure applied in agricultural fields. The $NO_3-N$ loads were different among various crops because of differences in crop nutrient uptake, amount of fertilizer applied, soil properties in the field. As shown in this study, the SWAT HRU mapping module can be efficiently used to evaluate the pollutant contribution via baseflow in agricultural watershed.

  • PDF

Clinical Results from Single-Fraction Stereotactic Radiosurgery (SRS) of Brain Arteriovenous Malformation: Single Center Experience (뇌동정맥기형에서 선형가속기를 이용한 방사선 수술 후의 임상적 결과)

  • Lim, Soo-Mee;Lee, Re-Na;Suh, Hyun-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.3
    • /
    • pp.274-280
    • /
    • 2010
  • The purpose of this study was to analyze the effect of single-fraction stereotactic radiosurgery (SRS) for the treatment of 15 cases of cerebral arteriovenous malformations (AVMs). Between 2002 and 2009, of the 25 patients who had SRS for the treatment of cerebral AVM, 15 patients (6 men, 9 women) taken a digital subtraction angiography (DSA) over 12 months after SRS were included. We retrospectively evaluated the size, location, hemorrhage of nidus, angiographic changes on follow-up on the MR angiography and DSA, and clinical complications during follow-up periods. At a median follow-up of 24 months (range 12-89), complete obliteration of nidus was observed in all patients (100%) while residual draining veins was observed in 3 patients (20%). There was no clinical complication during the follow-up period except seizure in 1 patient. The mean nidus volume was 4.7cc (0.5~11.7 cc, SD 3.7 cc). The locations of nidus were in cerebral hemisphere in 11 patients, cerebellum in 2 patients, basal ganglia in 1 patient, and pons in 1 patient respectively. 9 cases were hemorrhagic, and 6 cases were non-hemorrhagic AVMs. The SRS with LINAC is a safe and effective treatment for cerebral AVMs when the follow up period is over 4 years. However, it is recommended to continue to follow up until the draining vein on arterial phase of follow up DSA disappears completely.

Water Column Properties and Dispersal Pattern of Suspended Particulate Matter (SPM) of Marian Cove during Austral Summer, King George Island, West Antarctica (남극 킹죠지섬 마리안 소반의 하계 수층 특성과 부유물질 분산)

  • Yoo, Kyu-Cheul;Yoon, Ho-Il;Oh, Jae-Kyung;Kim, Yea-Dong;Kang, Cheon-Yun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.266-274
    • /
    • 1999
  • Vertical CTDT measurement at one point near tidewater glacier of fjord-head in Marian Cove, a tributary embayment of Maxwell Bay, South Shetland Islands was performed for 24 hours during the austral summer (January 21-22, 1998) to present water-column properties and SPM (suspended particulate matter) dispersal pattern in subpolar glaciomarine setting. Marian Cove shows three distinct water layers: 1) cold, freshened, and highly turbid surface plume in the upper 2 m, 2) warm, saline, and relatively clean Maxwell Bay water between 15-35 m in water depth, and 3) cold and turbid mid plume between 40-65 m in water depth. The surface plume is composed of silt-sized clastie particles mixed with flocculated biogenic detritus, and appears to originate from either supraglacial discharge by meltwater streams along the coast or water fall of ice cliff. Freshened and turbid mid plume consists exclusively of silt-sized clastic particles, resulting from subglacial discharge beneath the tidewater glacier. The disappearance of the two turbid plumes during the earlier period of measurement seems to be largely due to the breakup of the plumes by upwelling caused by strong easterly wind (> 8 m $sec^{-1}$). Thus, wind coupling over tidal effects regionally plays a major role in dispersal pattern of SPM as well as water exchange in Marian Cove.

  • PDF