얼굴 영상에서 구성요소(눈썹, 눈, 코, 입 등)의 존재에 따라 보는 사람의 얼굴 인식 정확도는 큰 영향을 받는다. 이는 인간의 뇌에서 얼굴 정보를 처리하는 과정은 얼굴 전체 영역 뿐만 아니라, 부분적인 얼굴 구성요소의 특징들도 고려함을 말한다. 비음수 행렬 분해(NMF: Non-negative Matrix Factorization)는 이러한 얼굴 영역에서 부분적인 특징들을 잘 표현하는 기저영상들을 찾아내는데 효과적임을 보여주었으나, 각 기저영상들의 중요도는 알 수 없었다. 본 논문에서는 NMF로 찾아진 기저영상들에 대응되는 인코딩 정보를 SLR(Sparse Logistic Regression)을 이용하여 성별 인식에 중요한 부분 영역들을 찾고자 한다. 실험에서는 주성분분석(PCA)과 비교를 통해 NMF를 이용한 기저영상 및 특징 벡터 추출이 좋은 성능을 보여주고, 대표적 이진 분류 알고리즘인 SVM(Support Vector Machine)과 비교를 통해 SLR을 이용한 특징 벡터 선택이 나은 성능을 보여줌을 확인하였다. 또한 SLR로 확인된 각 기저영상에 대한 가중치를 통하여 인식 과정에서 중요한 얼굴 영역들을 확인할 수 있다.
본 논문에서는 fMRI를 사용하여 뇌신경 반응을 측정한 후, 자극으로 주어진 $10{\times}10$ 크기의 이진 영상을 사전 정보 없이 복원하기 위해 비음수 행렬 분해를 이용한 자동화된 영상 기저 추출 방법을 제안한다. 영상 기저란 영상을 표현하는 기본 단위로, 기존 연구에서는 사전에 정의된 $1{\times}1$, $2{\times}1$, $1{\times}2$, $2{\times}2$의 크기를 갖는 총 361개의 영상 기저에 반응하는 뇌 신호를 분석하여 기저 영상으로 복원하고, 모든 기저에 대한 복원 결과를 선형 결합하여 최종복원 영상을 획득하였다. 사람이 사전에 정의한 영상 기저를 필요로 하는 기존 연구와는 달리, 본 연구에서는 비음수 행렬 분해를 기반으로 학습 데이터로 주어진 이진 영상을 가장 잘 표현하는 영상 기저를 자동 추출하였다. 자동으로 추출된 영상 기저를 사용하여 이진 영상을 복원한 결과, 기존 연구 방법보다 개선된 복원 정확도를 보였다.
본 논문에서는 각 개인의 동작영상에 대한 국부고유공간에 바탕을 둔 기저영상을 이용한 효율적인 수화영상 인식 기법을 제안하였다. 여기서 국부고유공간의 추출은 주요성분분석을 이용한 것으로 동작영상의 국소특징을 더욱 더 잘 반영하기 위함이고, 기저영상의 추출은 독립성분분석을 이용한 것으로 수화영상 내에 포함된 고차원의 독립적인 특징들을 반영하여 보다 개선된 인식성능을 얻기 위함이다. 제안된 기법을 240*215 픽셀의 80(1명*5동물*16동작)개 동물을 표현하는 수화동작을 대상으로 Euclidean의 분류척도를 이용하여 실험한 결과, 단순 국부고유공간을 이용한 방법에 비해 우수한 인식성능이 있음을 확인하였다.
점확산 함수(point spread function; PSF)의 정확한 추정은 복원결과가 원 영상에 얼마나 근접할 수 있는가를 결정한다는 점에서 영상처리의 중요한 연구 주제중의 하나가 된다. 본 논문에서는 PSF를 추정하기 위한 알고리즘을 제안하고, 이를 영상복원에 적용한 후 이를 기반으로 디지털 자동초점시스템을 제안한다. 초점불안전 열화시스템을 구현하기 위한 과정은 두 단계로 구성되어 있는데, 즉 입력 영상에서 에지분류를 통한 PSF 추정과, 이를 이용한 영상복원이다. 보다 구체적으로, 입력 영상에 특정 에지가 있는 임의의 크기의 블록을 선정해부면, 그 블록으로부터 자동으로 에지방향이 기저영상을 이용해서 구해지며 확산원의 크기를 추정하여 1차원 단위 계단응답과 영역을 구하여 평균한 후, 2차원 등방성 PSF를 추정한다. 마지막으로 추정된 PSF를 사용하여 복원을 수행함으로써 초점이 맞는 영상을 구한다.
본 논문에서는 영상의 1차 모멘트와 기저영상을 이용한 효율적인 얼굴인식 방법을 제안하였다. 여기서 1차 모멘트는 입력되는 얼굴영상의 중심 좌표를 계산하여 중심 이동하는 전처리로 인식에 불필요한 배경을 배제시킴으로써 인식성능을 개선하기 위함이다. 또한 기저영상은 얼굴의 특징으로 주요성분분석과 고정점 알고리즘의 독립성분분석을 각각 이용하여 추출하였다. 이는 2차와 고차의 통계성을 각각 고려한 중복신호의 제거로 인식성능을 개선하기 위함이다. 제안된 2가지 방법을 각각 64*64 픽셀의 48개(12명*4장) 얼굴영상에 적용하여 city-block, Euclidean, 그리고 negative angle의 3가지 거리 척도를 분류척도로 이용하여 실험하였다. 실험결과, 중심이동의 제안된 방법은 전처리과정을 거치지 않는 기존방법보다 우수한 인식성능이 있음을 확인하였다. 또한 제안된 중심이동의 독립성분분석이 중심이동의 주요성분분석보다 더욱 우수한 인식성능이 있음도 확인하였다. 특히 city-block이 Euclidean이나 negative angle의 거리척도보다 상대적으로 정확하게 유사성을 측정함을 알 수 있었다.
부공간 투영기술(subspace projection)을 이용한 얼굴인식기술의 성능은 이들 기저영상들(basis images)의 특징과 밀접한 관련이 있다. 특히 표정변화와 같은 국부적 왜곡이나 오클루전이 있는 경우의 인식성능은 기저영상들의 특징에 의해 영향을 받게 된다. 부공간 투영기반의 얼굴인식 방법이 오클루전이나 표정변화와 같은 국부적인 왜곡발생에 강인하려면 부분국부적 표현(part-based local representation)의 기저벡터를 갖는 것이 중요하다. 본 연구에서는 국부적 왜곡과 오클루전에 강인한 효과적인 부분국부적 표현방법을 제안한다. 제안한 방법을 LS-ICA(locally salient ICA) 방법이라고 명명하였다. LS-ICA방법은 ICA 구조I의 기저영상을 구하는 과정에서 공간적인 국부성(locality)의 제약조건을 부과함으로써 부분국부적 기저영상(part-based local basis images)을 얻는 방법이다. 결과적으로 공간적으로 현저한 특징만을 포함하는 기저영상을 사용하게 되며, 이는 "Recognition by Parts"의 방법론과 유사하다. LS-ICA방법과 LNMF(Localized Non-negative Matrix Factorization)와 LFA(Local Feature Analysis)와 같은 기존의 부분 표현방법(part-based representation)들에 대해 다양한 얼굴영상 데이타베이스를 사용하여 실험한 결과, LS-ICA방법이 기존의 방법에 비하여 높은 인식성능을 보였으며, 특히 오클루전이나 국부적인 변형이 포함된 얼굴영상에서 뛰어난 인식성능을 보였다.
본 논문에서는 하향식 기계 학습 및 반복적 오차 역투영음 이용하여 한 장의 저해상도 얼굴 영상으로부터 고해상도 얼굴 영상을 복원하는 방법을 제안한다. 먼저 얼굴 영상을 독립된 형태 기저와 질감 기저의 선형 중첩으로 표현하고, 주어진 저해상도 얼굴 영상을 형태 기저와 질감 기저의 선형 중첩으 로 최대한 근사하게 표현할 수 있는 계수를 추정한다. 이 추정된 계수를 고해상도 얼굴 영상의 형태 기저 와 질감 기저의 선형 중첩 계수로 사용함으로써 고해상도 얼굴 영상을 복원한다. 또한, 복원된 고해상도 얼굴 영상의 정확도를 개선하기 위하여 학습 기반 오차 역투영 과정을 반복적으로 적용한다. 다양한 실험을 통하여, 제안된 방법이 저해상도 얼굴 영상으로부터 고해상도 얼굴 영상을 효과적으로 복원함을 입증하였으며, 이 방법을 사용하여 원거리 감시 시스템에서 획득된 저해상도 얼굴 영상을 고해상도 얼굴 영상으로 합성함으로써, 얼굴 인식 시스템의 성능을 높일 수 있음을 확인하였다.
목적 : Siemens사의 Flash 3D(Pixon(R) method, 3D OSEM)는 검사 시간을 단축하면서 재구성을 통해 영상의 질을 높일 수 있도록 개발된 소프트웨어 프로그램으로써 핵의학 단층 촬영 시 유용하게 적용되고 있는 영상처리기법이다. 그러나 감산된 영상을 Flash 3D로 재구성하여 시행하는 뇌 혈류 부하 검사 시에 영상 획득시간을 짧게 하여 검사를 시행하면 재구성된 감산 영상의 신호 대 잡음비가(SNR, signal to noise ratio) 기저 영상에 비해 낮아지는 문제점이 있었다. 감산 영상의 SNR을 높이기 위해 LEAP 검출기를 사용하였고, 뇌혈관의 해상력보다는 혈관 확장의 예민도에 더 중점을 두었다. 본 실험은 뇌혈관 부하 단층 촬영 시 LEAP 검출기의 적용 가능성을 확인하고, Flash 3D를 이용한 적정 수준의 재구성 매개 변수를 파악하는 데 목적이 있다. 실험재료 및 방법 : (1) 팬텀 평가: $^{99m}Tc$을 넣은 Hoffman 3D Brain $Phantom^{TM}$을 이용하였다. LEAP와 LEHR 검출기로 첫 번째 영상을(부하 영상에 해당) 획득하고 $^{99m}Tc$의 반감기인 6시간 후 동일한 방법으로 두 번째 영상을(기저 영상에 해당) 획득하였다. 또한, 각각의 기저 영상과 감산 영상의 SNR 및 백질과 회백질의 비를 측정하였다. (2) 환자 영상의 평가: 2008년 5월부터 2009년 1월까지 LEAP 검출기로 촬영하여 정상으로 판독된 15명과 LEHR 검출기로 촬영하여 정상으로 판독된 13명의 환자를 대상으로 영상을 정성분석 하였다. Phantom에서 얻은 재구성 매개 변수를 대입하여 평가하였다. 하루 검사 프로토콜로 시행하였으며 기저에서 925 MBq, 부하에서 925 MBq의 $^{99m}Tc$-ECD를 투여하였다. 결과 : (1) 팬텀 평가: 각 검출기에서 획득한 계수치를 측정한 결과 LEHR 기저에서는 41~46 kcount, 부하에서 79~90 kcount, 감산에서 40~47 kcount가 측정되었다. LEAP의 경우 기저에서 102~113 kcount, 부하에서 188~210 kcount, 감산에서 94~103 kcount가 측정되었다. LEHR 감산 영상의 SNR은 LEHR 기저 영상과 비교하면 37% 감소하여 나타났고, LEAP 감산 영상의 SNR은 LEAP 기저 영상과 비교하면 17% 감소하여 나타났다. 회백질과 백질의 비는 LEHR 기저에서 2.2:1 감산에서 1.9:1로 측정되었고, LEAP 기저에서는 2.4:1 감산에서 2:1로 측정되었다. (2) 환자 영상의 평가: LEHR 검출기로 획득한 계수는 기저에서 대략 40~60 kcount, 부하에서 80~100 kcount 사이였다. 기저 및 부하 영상은 FWHM을 7 mm로 (타 장비의 Cutoff에 해당), 감산 영상은 FWHM을 11 mm로 설정하는 것이 적절하였다. LEAP는 기저에서 대략 80~100 kcount, 부하에서 180~200 kcount로 측정되었다. LEAP 영상은 기저 및 부하에서 FWHM을 5 mm로, 감산에서 7 mm로 설정해야 영상의 흐림을 줄일 수 있었다. 기저 및 부하 영상은 LEHR 영상이 LEAP 영상보다 해상력이 우수했다. 그러나 감산 영상의 경우 팬텀 실험과 같이 LEHR 영상의 SNR이 떨어져 영상이 거칠게 보였다. 감산 영상은 LEAP 영상이 LEHR 영상에 비해 SNR 및 예민도가 높게 평가되었다. LEHR과 LEAP 검출기의 모든 영상에서 subset과 iteration은 8회가 적절하였다. 결론 : LEAP 검출기를 이용해 적정 수준의 필터를 사용함으로써 SNR을 높여 보다 선명한 감산 영상을 획득할 수 있게 되었다. 하루 검사 프로토콜을 적용하여 Flash 3D로 재구성하는 경우, 보다 나은 감산 영상을 얻기 위해 LEAP 검출기의 적용을 고려해 볼 수 있을 것으로 판단된다.
본 논문에서는 MLCA(Maximum length CA) 기반의 의사난수열(Pseudo-random numbers)을 이용하여 동영상을 암호화하는 방법을 제안한다. MLCA 기반의 난수열을 이용하여 기저영상을 생성한 후, 동영상의 모든 프레임과 기저영상 사이의 XOR 연산을 취함으로써 동영상을 암호화한다. 하나의 CA Rule 또는 두 개의 CA Rule을 이용하는 경우를 구분하여 영상을 암호화 하고 그 결과에 대해 평가한다.
Gabor 코사인과 사인 변환은 영상주파수 성분을 국부적으로 표현하므로 영상과 비디오 압축 알고리즘에 사용될 수 있다. 압축과 복원에 사용되는 순방향과 역방향 행렬 변환식의 계산 복잡도는 O($N^3$)이다. 이 논문에서는 기저함수들의 길이를 절단하여, 희소기저행렬을 생성하고, 영상압축과 복원에 적용하여 실시간 처리에 용이하게 변환 계산량을 감소시키고자 한다. 기저함수 길이가 감소함에 따라서, 기저함수 에너지에 미치는 절단의 영향을 조사하고 다른 여러 측정량의 변화를 살펴본다. 실험 결과로부터 약 1% 이하의 성능저하로 11배의 곱하기/더하기 수를 감소시킬 수 있음을 보았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.