• Title/Summary/Keyword: 기어박스

Search Result 117, Processing Time 0.023 seconds

Model-based Diagnosis for Crack in a Gear of Wind Turbine Gearbox (풍력터빈 기어박스 내의 기어균열에 대한 모델 기반 고장진단)

  • Leem, Sang Hyuck;Park, Sung Hoon;Choi, Joo Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.447-454
    • /
    • 2013
  • A model-based method is proposed to diagnose the gear crack in the gearbox under variable loading condition with the objective to apply it to the wind turbine CMS(Condition Monitoring System). A simple test bed is installed to illustrate the approach, which consists of motors and a pair of spur gears. A crack is imbedded at the tooth root of a gear. Tachometer-based order analysis, being independent on the shaft speed, is employed as a signal processing technique to identify the crack through the impulsive change and the kurtosis. Lumped parameter dynamic model is used to simulate the operation of the test bed. In the model, the parameter related with the crack is inversely estimated by minimizing the difference between the simulated and measured features. In order to illustrate the validation of the method, a simulated signal with a specified parameter is virtually generated from the model, assuming it as the measured signal. Then the parameter is inversely estimated based on the proposed method. The result agrees with the previously specified parameter value, which verifies that the algorithm works successfully. Application to the real crack in the test bed will be addressed in the next study.

Study on Analysis of Transfer Torque and Improvement of Transfer Torque in Non-Contact Permanent Magnet Gear (비접촉 영구자석 기어의 전달토크 분석 및 전달토크 향상에 대한 연구)

  • Park, Gyu-Sang;Kim, Chan-Ho;Kim, Yong-Jae
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.181-188
    • /
    • 2015
  • The non-contact permanent magnet gear has advantages of high efficiency and improved reliability. It has other advantages of no mechanical friction loss, very little noise and vibration, and no need for lubricant. With these advantages, the non-contact permanent magnet gear that solves the physical contact problem of the mechanical gear has drawn attention. Due to this unique non-contact characteristic, the non-contact permanent magnet gear which is capable of non-contact torque transmission has replaced mechanical gear. The mechanical gears which is in many fields of the modern industry, is used mostly for power transmitting mechanical devices. However, it also has the problem of a low torque density, which requires improvement. In this paper, a novel pole piece shape is proposed in order to improve the problem of low torque density of the non-contact permanent magnet gear. The experiment data required for predicting the relationships among them are obtained using finiteelement Operating method based on two-dimensional (2-D) numerical analysis. Therefore, this paper derived an optimal model for thenon-contact permanent magnet gear with the novel pole piece using the Box-Behnken design, and the validity of the optimal design of the proposed pole piece shape through variance analysis and regression analysis demonstrated. In this paper, we performed the thransfer torque analysis in order to improve the torque density and power density, we have performed on optimal design of proposed pole piece shape using box-behnken.

Evaluation of Fatigue Life of Welded Joint of Gear Box-Shank in Vibro Ripper Using P-S-N Curve (P-S-N선도를 이용한 진동리퍼 기어박스-생크 용접부의 피로수명 평가)

  • Oh, Kwang Keun;Kim, JaeHoon;Park, Jung Yeol;Yang, GyuSang;Park, JongWon;Kim, Sung Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1207-1212
    • /
    • 2015
  • A vibro ripper utilizes high-frequency vibration for rock fragmentation. This concept is different from those used by other existing breakers. The gearbox-shank welded joint of a vibro ripper is a very important part. Because it delivers the vibromotive force to the tooth, it is important to predict its soundness. This study was conducted to predict the fatigue life under welding conditions. The shank materials were Hardox-Hituf and AR400, and the filler metals were CSF-71T and CSF-81T. Fatigue tests were conducted under each set of conditions. P-S-N curves are presented based on the statistical testing method recommended by JSME-S002, and a comparison is made of the results under each set of conditions. The life was estimated using a P-S-N curve.

Study of Dynamic Characteristics of 2.5-MW Wind Turbine Gearbox (2.5MW 풍력발전기 기어박스 동특성 연구)

  • Kimg, Jung-Su;Park, No-Gill;Han, Ki-Bong;Lee, Hyoung-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.314-323
    • /
    • 2014
  • In this study, a gearbox and blade were modeled in the MASTA program, and the housing and carrier components were modeled using a finite element method. Using substructure synthesis, all the components were combined and used to establish a vibration model of a 2.5-MW wind turbine gearbox. In addition, the safety displacement factor was evaluated using an AGMA data sheet about bearing's outer race for the input shaft and output shaft. As a result, the bearing's outer race for the input shaft, and the radial and axial responses were satisfied by the $1^{st}$ and $2^{nd}$ planetary gears and the $3^{nd}$ helical gear transmission error(TE), respectively. However, the output shaft support bearing's outer race responses were not satisfied with the radial response by the $2^{nd}$ TE and axial response by the $3^{rd}$ TE. To reduce the vibration, tooth modification was needed. After profile tooth modification, at the outer race of the output shaft support bearing, the radial response was reduced by approximately $20{\mu}m$, and the axial response was reduced by approximately $6{\mu}m$.

Development Test for Flexible PTO Shaft Made of Ti Alloy for Aircraft (Ti 합금을 이용한 항공기용 Flexible PTO 샤프트 개발 시험)

  • Lee, Joo Hong;Kang, Bo Sik;Yu, Hyun Seok;Lee, Ji Man;Cho, Hae Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.8
    • /
    • pp.759-765
    • /
    • 2016
  • The PTO (Power Take-Off) shaft for aircraft, with welded construction using multiple thin membranes, was developed in the 1950s to improve the elasticity of the part. As it is lightweight, stable at high speeds, and has good flexibility, it is used in most of the fighter aircraft. It connects the AMAD (aircraft mounted accessory drive) gearbox with the EMAD (engine mounted accessory drive) gearbox and transmits the rotational power between them. It operates in the high speed range of 10,000-18,000 rpm. In this study, the safety of the PTO shaft made of Ti alloy was investigated using finite element analysis, and the ability to transmit power was demonstrated through a high-cycle fatigue test conducted in a laboratory. Further, the life of the ball joints of the aircraft under high-cycle fatigue test conditions was predicted, and the wear characteristics were analyzed.

Validation of Actuator Gearbox Accelerated Test Method Using Multi-Body Dynamics Simulation (다물체 동역학 시뮬레이션을 이용한 작동기용 기어박스 가속시험법 검증)

  • Donggun Lee;Sanggon Moon;Young-Jun Park;Woo-Ram Shim;Sung-Bo Shim;Su-Chul Kim
    • Journal of Drive and Control
    • /
    • v.21 no.1
    • /
    • pp.22-30
    • /
    • 2024
  • Gearboxes designed for reciprocating motion operating mechanisms operate under conditions where both the load and speed undergo continuous variations. When conducting durability tests on gearboxes designed for such applications, operating the target gearbox under conditions similar to the intended usage is essential. The gearbox must be operated for the required number of cycles to validate its durability under conditions mirroring its intended usage. This study devised an accelerated test method for gearboxes, which reduces operating angles and operational strokes. The reliability of the accelerated test was verified by comparing the stresses imposed on the gears under general and acceleration conditions through multi-body dynamic simulations. The results confirmed that the maximum contact stress levels under normal and accelerated conditions were within a 0.1% error range, indicating a minimal difference in the gear damage rates. However, a difference in the maximum contact stress results between the normal and accelerated conditions was observed when inertial forces acted on the output shaft due to the operational acceleration of the gearbox. Therefore, when conducting this acceleration test, caution should be exercised to ensure that the operational load on the gearbox, which affects inertia, does not significantly deviate from the conditions observed under normal operating conditions.

A Study on the Structure of Hybrid Magnetic Gear with Armature Type Rotor (전기자 형태의 회전자를 갖는 하이브리드 마그네틱 기어의 구조에 관한 연구)

  • Gim, Chan-Seung;Park, Eui-Jong;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1235-1242
    • /
    • 2018
  • When the wind speed changes rapidly, the wind turbine is stopped for the safety of the power system and the mechanical system. At that moment, the wind turbine gearbox is damaged and broken due to the contact load of the gearbox. In addition, the problems such as increasing frictional heat and deteriorate of the brake occur, because the power of the blades is transmitted directly to the brakes. This paper proposes a hybrid magnetic gear shape that solves the problem caused by the contact of the mechanical gear, which is the power transmission device of the wind power generation system, and the power cutoff system. The shape of the hybrid magnetic gearsuitable for the wind power generation system is derived through the torque and loss analysis according to the shape of the hybrid magnetic gear by using the two dimensional finite analysis method.

Experimental Investigation to Establish Correlation Between Specific Film Thickness and Vibration Signals in Spur Gear System (스퍼 기어의 진동 신호와 비 유막 두께(Specific Film Thickness)의 상관관계에 관한 실험적 연구)

  • Kim, Jong Sik;Amarnath, M.;Lee, Sang Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.1005-1012
    • /
    • 2014
  • Gears are critical elements in automobiles, and their use as power transmitting machine elements in engineering applications is quite extensive. In the areas of contact between gear teeth, the condition of a gear is likely to deteriorate due to contact fatigue, wear, material defects, lubrication failure, etc. Thus, it is necessary to monitor its condition to ensure smooth power transmission. Gear teeth deterioration causes failures such as abrasive wear, scuffing, pitting, and spalling. These failures lead to a higher level of vibration signals in the gear system. This paper presents the results of an experiment on the surface fatigue wear of a spur gear system. The correlation between the estimated specific film thickness, statistical parameter of the vibration signals, and Stribeck curve was considered in this study.

Study on Compactness of Gearbox for Wind Turbine using Flexible Pin (유연핀(Flexible Pin) 적용을 통한 풍력발전용 기어박스 경량화 연구)

  • Lee, Ki-Hun;Lee, Geun-Ho;Park, Young-Jun;Nam, Yong-Yun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.339-342
    • /
    • 2008
  • The gearbox for wind turbine has been increased the size by demanding of bigger power production. The optimal sizing for gearbox is demanded because of limited space on the nacelle. The volume and weight for the gearbox are influenced especially for size of it. Therefore, the purpose of this study investigates the design characteristics using flexible pin of gearbox for minimizing the volume and weight of the gearbox.

  • PDF

Cooling System Design of PM Synchronous Generator for KBP-2000M (KBP-2000M 풍력발전기용 영구자석형 동기발전기의 냉각시스템 설계)

  • Lee, H.G.;Kim, D.E.;Suh, H.S.;Han, H.S.;Jung, Y.G.;Lee, W.W.;Park, K.H.;Chung, C.W.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.315-318
    • /
    • 2006
  • 포항풍력에너지연구소에서는 에너지 관리공단의 지원으로 2004년부터 풍력터빈 KBP-2000M에 사용될 발전기를 개발해 오고 있다. KBP-2000M에 사용되는 발전기는 기어비가 24인 기어박스를 가진 가변속도형식의 발전기이다. 발전기의 직경은 1.87m 이고 축 방향의 길이는 1.288m 로 영구자석을 사용하여 여자하는 형식으로 설계되었다. 이러한 설계는 풍력발전기에서 요구하는 주요 요구조건인 고효율, 고 신뢰성을 만족시키기 위해서 매우 중요하다 이 보고에서는 발전기의 물리설계에서 얻어진 사양을 기준으로 하여 열 해석에서 얻어진 열 손실을 이용하여 냉각시스템 설계를 하였으며 펌프 및 라디에이터 선정에 관해서 논의한다.

  • PDF