Kim, Hyunki;Moon, Hyun-Dong;Ryu, Jae-Hyun;Kwon, Dong-Won;Baek, Jae-Kyeong;Seo, Myung-Chul;Cho, Jaeil
Korean Journal of Remote Sensing
/
v.37
no.5_1
/
pp.1199-1206
/
2021
Accordingly, attention is also being paid to the agricultural use of remote sensing technique that non-destructively and continuously detects the growth and physiological status of crops. However, when remote sensing techniques are used for crop monitoring, it is possible to continuously monitor the abnormality of crops in real time. For this, standard growth information of crops is required and relative growth considering the cultivation environment must be identified. With the relationship between GDD (Growing Degree Days), which is the cumulative temperature related to crop growth obtained from ideal cultivation management, and the vegetation index as standard growth information, compared with the vegetation index observed with the spectralreflectance sensor(SRSNDVI & SRSPRI) in each rice paddy treated with standard cultivation management and non-fertilized, it was quantitatively identified as a time series. In the future, it is necessary to accumulate a database targeting various climatic conditions and varieties in the standard cultivation management area to establish a more reliable standard growth information.
Recently, the miniaturization and digitalization for the inspection devices of point-of-care testing (POCT) are rapidly evolving. In the urine test, a lot of researches on index paper technology are being conducted because people can be self-diagnosed through visual color comparison using a urine test paper, Dipsick. The purpose of this study is to analyze the RGB values from the color changes on Dipstick Pad, which isused for urine test, using a smartphone camera. To this end, the primary, analytes in urine wasdiabetes-related parameters such as glucose, ketone body and pH, which is the most frequently tested elements, and we pursuited to quantify the changes in dipstick color caused from artificial urine containing different ranges of sugar, ketone body, and pH. In this experiment, changes in RGB values under bright and dark illuminances were compared, and changes in RGB value were monitored as a function of concentration of analytes under the ambient illumination of laboratory. As a result, color separation at the bright luminance region was good, but it did not appearat the low luminance region, and the changed profiles in RGB value under different illuminances was suggested to correct the problem of the color separation algorithm.
The Journal of the Korea institute of electronic communication sciences
/
v.16
no.2
/
pp.371-378
/
2021
In this study, in order to analyze the spatial distribution of cold water occurred in the Southeast Sea of Korea, the K-means clustering method was used to analyze the ocean observatory buoy of Gori and Yangpo and GHTSST Level 4 from 2016 to 2018. The buoy data was used to identify the change in sea water temperature and the cold water occurrence at Gori and Yangpo in the Southeast Sea. As a result, the sea water temperature of Gori and Yangpo decreased equally at the cold water occurrence. Therefore, the reciprocal of the sea water temperature and the variance of SST were compared to see the changes of SST when the cold water occurs. When the reciprocal of the sea water temperature increases, the dispersion of SST also increases. Through this, it can be seen that there is a change in the water temperature distribution of SST in the sea when the cold water occurs. After that, K-means clustering was used to classify the cold water. After analyzing the optimal K value for clustering by using the Elbow method, it was possible to classify a region with cold water. Through this, it is estimated that the spatial distribution and diffusion range of the cold water, and it can be estimated and used in future studies to identify damage caused by the cold water and predict spatial spread.
In recent years, Convolutional Neural Networks (CNNs) have achieved outstanding performance in the fields of computer vision such as image classification, object detection, visual quality enhancement, etc. However, as huge amount of computation and memory are required in CNN models, there is a limitation in the application of CNN to low-power environments such as mobile or IoT devices. Therefore, the need for neural network compression to reduce the model size while keeping the task performance as much as possible has been emerging. In this paper, we propose a method to compress CNN models by combining matrix decomposition methods of LR (Low-Rank) approximation and CP (Canonical Polyadic) decomposition. Unlike conventional methods that apply one matrix decomposition method to CNN models, we selectively apply two decomposition methods depending on the layer types of CNN to enhance the compression performance. To evaluate the performance of the proposed method, we use the models for image classification such as VGG-16, RestNet50 and MobileNetV2 models. The experimental results show that the proposed method gives improved classification performance at the same range of 1.5 to 12.1 times compression ratio than the existing method that applies only the LR approximation.
Journal of the Korea institute for structural maintenance and inspection
/
v.25
no.4
/
pp.75-82
/
2021
The objective of this study is to examine the loss of prestressing stress in the developed prestressing reinforcing units using steel bar and pipe (SP). The main parameters were the reinforcing bar type, the magnitude of prestressed force, and prestressing method. The test results showed that the loss of prestressing stress for SP was highest in the initial prestressing step, which was higher for the compression introduction typed specimens than tension introduction typed specimens. The loss of prestressing stress of SP made with P800 was 1.6% for the compression introduction typed specimen with 0.8fy, which was lowest than the other specimens. Meanwhile, the relaxation of SP with the respect to the time ranged between 0.4 and 1.9%, irrespective of SP material type, the magnitude of prestressed force, and prestressing method. These values were less than 2.5%, which is the maximum value for the relaxation of prestressed reinforcing steel bars in design codes. Consequently, considering the loss of stress developed in the initial prestressing step, the developed SP material type, prestressing introduction method, and magnitude are recommended to be P800, compression introduction type, and 0.8fy.
This study surveyed and analyzed the labor market result when comparing the case that junior college students found a job after transferring to 4-year university with the case that they found the job directly after graduating the junior college. The difference of the occupational structure following the transfer was surveyed in detail and this study examined what effect the transfer had on the occupation status. The graduate occupation movement survey(GOMS) was used and the samples of 544 persons were extracted to use through propensity score matching(PSM) to raise the choice convenience of the sample. The occupation status index to use as a dependent variable was developed to apply. The study result is as follows. First, as a result of confirming the occupational structure of the transfer, the transfer students were distributed in more various industrial fields evenly compared to the non-transfer students in the horizontal industrial structure, and non-transfer students were intensively distributed in the certain field. In the vertical occupation status structure, transfer students were distributed in the high occupation status more than non-transfer students who were broadly distributed in the low occupation status. Second, it was revealed the college transfer was highly effective for the occupation status, which appeared statistically significantly. The explanation variable that appeared significantly outside of that included the parents' academic background, major affiliation, employment pattern, major job coincidence, and job coincidence. The higher students' academic background was, the higher the occupation status was and in case of the engineering natural science affiliation, the occupation status was higher than the humanities social science. In case of full-time workers, their occupation status was higher than one of part time workers and it was revealed the occupation status was high when the their major coincided with the job and their educational/technical level coincided with their job.
Stream water qualities have been predicted in the year 2002 and 2014 through providing the Hwangguji Stream Rectification Plan. However, the reliability of result for predicted water quality was relatively lower by applying conventional values of the parameters in model. In this study deoxygenation coefficients between Sema bridge(HGJ2) and Sujik bridge(HGJ3) have been evaluated based on the observed data of water quality and travelling time to compare with the applied value of coefficients in predicting water quality model. The values of deoxygenation coefficient $0.078day^{-1}{\sim}0.748day^{-1}$ for normal period and $0.053day^{-1}{\sim}0.505day^{-1}$ for drought period have been calculated based of observed data between Sema bridge and Sujik bridge. The values of coefficients $0.02day^{-1}{\sim}3.4day^{-1}$ have been applied in predicting water quality model in the year 2002 and $0.043day^{-1}$ 2014. Thus, the simulated results of stream water quality were better than the observed data in 2002, and worse in 2014. It has shown that values of deoxygenation coefficient should be properly estimated based on observed data to predict proper stream water quality by model.
Kim, Hyunbin;Kim, Mingyu;Park, Yonggun;Yang, Sang-Yun;Chung, Hyunwoo;Kwon, Ohkyung;Yeo, Hwanmyeong
Journal of the Korean Wood Science and Technology
/
v.47
no.2
/
pp.229-238
/
2019
Various wood defects occur during tree growing or wood processing. Thus, to use wood practically, it is necessary to objectively assess their quality based on the usage requirement by accurately classifying their defects. However, manual visual grading and species classification may result in differences due to subjective decisions; therefore, computer-vision-based image analysis is required for the objective evaluation of wood quality and the speeding up of wood production. In this study, the SIFT+k-NN and CNN models were used to implement a model that automatically classifies knots and analyze its accuracy. Toward this end, a total of 1,172 knot images in various shapes from five domestic conifers were used for learning and validation. For the SIFT+k-NN model, SIFT technology was used to extract properties from the knot images and k-NN was used for the classification, resulting in the classification with an accuracy of up to 60.53% when k-index was 17. The CNN model comprised 8 convolution layers and 3 hidden layers, and its maximum accuracy was 88.09% after 1205 epoch, which was higher than that of the SIFT+k-NN model. Moreover, if there is a large difference in the number of images by knot types, the SIFT+k-NN tended to show a learning biased toward the knot type with a higher number of images, whereas the CNN model did not show a drastic bias regardless of the difference in the number of images. Therefore, the CNN model showed better performance in knot classification. It is determined that the wood knot classification by the CNN model will show a sufficient accuracy in its practical applicability.
PARK, Geon-Ung;PARK, Kyung-Hun;MOON, Byung-Hyun;SONG, Bong-Geun
Journal of the Korean Association of Geographic Information Studies
/
v.22
no.2
/
pp.1-14
/
2019
In rural areas, composting is a source of non-point pollutants. However, as the quantitative distribution and loading have not been estimated, it is difficult to determine the effect of composting on stream water quality. In this study, composting datum acquired by unmanned aerial vehicle(UAV) was verified by using terrestrial LiDAR, and the management status and load change of the composting was investigated by UAV with manual control flight, thereby obtaining the basic data to determine the effect on the water system. As a result of the comparative accuracy assessment based on terrestrial LiDAR, the difference in the digital surface model(DSM) was within 0.21m and the accuracy of the volume was 93.24%. We expect that the accuracy is sufficient to calculate and utilize the composting load acquired by UAV. Thus, the management status of composting can be investigated by UAV. As the total load change of composting were determined to be $1,172.16m^3$, $1,461.66m^3$, and $1,350.53m^3$, respectively, the load change of composting could be confirmed. We expect that the results of this study can contribute to efficient management of non-point source pollution by UAV.
This study aims to examine Blockchain research trend using bibliometrics-based network analysis. The data were collected from WoS, Scopus, Korea Citation Index and National science & Technology Information Service, from 2009 to 2018. As results, the number of publications has started increasing rapidly from 2017 and it showed the initial stage of formation of coauthor network. Words often used in the title of the publications were related to application development, controversy and technology development. In addition, the majority of domestic papers are in the subject of social science, while international papers tend to focus on engineering issues. The results of the temporal analysis show that Korean researchers' block chain 3.0 started in 2017 and are rapidly increasing in 2018. The number of citations was associated with publication year in a statistically signifiant way. By examining these research trends, we hope that this paper can be a useful basis for the development of blockchain. Future research is expected to reveal more clearly the knowledge structure and characteristics of blockchain around the world.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.