• Title/Summary/Keyword: 기상드론

Search Result 39, Processing Time 0.029 seconds

Research on the meteorological technology development using drones for the fourth industrial revolution (4차산업혁명의 드론을 활용한 기상기술 개발 연구)

  • Chong, Jihyo;Lee, Seungho;Shin, Seungsook;Kim, Jeoungyun;Kim, Seungbum
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2019.05a
    • /
    • pp.173-174
    • /
    • 2019
  • 4차산업혁명시대의 기상 분야에 드론을 활용한 연구가 활발히 진행되고 있다. 대기경계층은 지표면에 가까워 기상현상이 활발하여 인간 활동에 밀접한 영향을 미쳐 하층 대기에 대한 연구가 필요하다. 이에 본 연구에서는 기상센서를 기상관측용 드론에 탑재하여 연직 기상관측 실험을 수행함으로써 드론을 활용한 기상관측의 가능성을 확인하였다.

  • PDF

Research on the Meteorological Technology Development using Drones in the Fourth Industrial Revolution (4차산업혁명에서 드론을 활용한 기상기술 개발 연구)

  • Chong, Jihyo;Lee, Seungho;Shin, Seungsook;Hwang, Sung Eun;Lee, Young-tae;Kim, Jeoungyun;Kim, Seungbum
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.11
    • /
    • pp.12-21
    • /
    • 2019
  • In the era of the Fourth Industrial Revolution, drones have become a flexible device that can be integrated with new technologies. The drones were originally developed as military unmanned aircraft and are now being used in various fields. In the environment and weather observation area, the atmospheric boundary layer is near the surface where the atmosphere is the most active in the meteorological phenomenon and has a close influence on human activities. In order to carry out the study of these atmospheric boundary layers, it is necessary to observe precisely the lower atmosphere and secure the observation technology. The drones in the meteorological field can be used for meteorological observations at a relatively low maintenance cost compared to existing equipment. When used in conjunction with various sensors, the drones can be widely used in atmospheric boundary layer and local meteorological studies. In this study, the possibility of meteorological observations using drones was confirmed by conducting vertical meteorological (temperature and humidity) observation experiments equipped with a combined meteorological sensor and a radio sonde on drones owned by NIMS.

Vertical Measurement and Analysis of Meteorological Factors Over Boseong Region Using Meteorological Drones (기상드론을 이용한 보성 지역 기상 인자의 연직 측정 및 분석)

  • Chong, Jihyo;Shin, Seungsook;Hwang, Sung Eun;Lee, Seungho;Lee, Seung-Hyeop;Kim, Baek-Jo;Kim, Seungbum
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.575-587
    • /
    • 2020
  • Meteorological phenomena are observed by the Korea Meteorological Administration in a variety of ways (e.g., surface, upper-air, marine, ocean, and aviation). However, there are limits to the meteorological observation of the planetary boundary layer (PBL) that greatly affects human life. In particular, observations using a sonde or aircraft require significant observational costs in economic terms. Therefore, the goal of this study was to measure and analyze the meteorological factors of the vertical distribution of the see-land breeze among local meteorological phenomena using meteorological drones. To investigate the spatial distribution of the see-land breeze, a same integrated meteorological sensor was mounted on each drone at three different points (seaside, bottom of mountain, and mountainside), including the Boseong tall tower (BTT) at the Boseong Standard Weather Observatory (BSWO) in the Boseong region. Vertical profile observations for air temperature, relative humidity, wind direction, wind speed, and air pressure were conducted up to 400 m every 30 minutes from 1100 LST to 1800 LST on August 4, 2018. The spatial characteristics of meteorological phenomena for temperature, relative humidity, and atmospheric pressure were not shown at the four points. Strong winds (~8 m s-1) were observed from the midpoint (~100 m) at strong solar radiation hour, and in the afternoon the wind direction changed from the upper layer at the inland area to the west wind. It is expected that the analysis results of the lower atmospheric layer observed using the meteorological drone may help to improve the weather forecast more accurately.

Science Technology - 드론, 날다 지치면 휴식 취한다

  • Kim, Hyeong-Ja
    • TTA Journal
    • /
    • s.166
    • /
    • pp.72-73
    • /
    • 2016
  • 지금은 드론(drone) 시대다. 무선전파로 유도해 비행과 조종이 가능한 무인 비행체 드론은 원래 '낮게 웅웅거림'을 뜻하는 말이다. 벌이 날아다니며 '웅웅'거리는 소리에 칙안에 붙여진 이름. 처음엔 군사용으로 탄생했지만, 이제는 고공영상 사진촬영과 배달, 기상정보 수집, 농약 살포 등 다양한 분야에서 활용되고 있다. 단 하나의 흠이라면 비행 중 휴식을 취할 수 없다는 것. 춤추듯 날아다니는 연약한 나비도 힘들면 식물의 잎에 앉아 쉬고, 여름철 왕성하게 활동하는 모기도 벽에 붙어 쉬면서 먹잇감 공격을 엿보는데, 드론은 공중에 잠시 멈출 때에도 날갯짓을 계속해야 한다. 이러한 드론의 휴식을 위해 과학자들이 다양한 '쉬어가기' 기술을 내놓고 있다.

  • PDF

Development of Education Software for Drone Flying Control using Object-Tracking (Object-Tracking을 이용한 드론 비행 조정의 교육용 소프트웨어 개발)

  • Koo, Bon-Jae;Lee, Chae-Eun;Hong, Jang-Eui
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.882-884
    • /
    • 2018
  • 드론은 최근 기상관측, 영상촬영, 인명구조 등의 다양한 분야로 활용 가능성이 입증되고 있다. 이에 따라 다양한 산업 분야에서 드론 적용을 위한 연구가 활발하게 진행되고 있으며, 또한 민간용 시장으로 빠르게 확산되고 있다. 이러한 확산은 일반인들도 드론에 대한 이해와 활용 관점을 가지게 되었고, 실험용 드론 시스템 제작/개발로 이어지고 고 있다. 그러나 드론은 비행체의 물리적 특성상 정밀한 제어가 용이하지 않기 때문에 많은 연습이 필요하다. 또한 법적으로 드론을 비행시킬 수 있는 공간이 다양하지 못하다. 따라서 이 논문에서는 드론을 처음 접하거나 조종이 미숙한 사람들을 대상으로 드론의 비행 조종 연습을 할 수 있는 웹 기반의 교육용 소프트웨어를 개발하고 그 실용 가능성을 평가한다.

미국과 유럽, 드론 산업정책과 규제정책에서 서로 다른 길을 걷다

  • Gang, Jeong-Su
    • The Optical Journal
    • /
    • s.158
    • /
    • pp.61-64
    • /
    • 2015
  • 드론(drone)이라 불리는 무인항공기(UAV)가 무인전투기, 무인정찰기 등 군사용도를 벗어나 일상생활의 다양한 영역에서 그 쓰임새를 빠르게 찾아가고 있다. 미국 아마존과 구글, 독일 DHL, 중국 알리바바 등이 배달전용 드론을 시범 운영하고 있다. 미국 미네소타 주에 위치한 메이요(Mayo) 병원은 주변 소재 작은 병원에 수혈용 피를 운반하는데 드론을 이용하고 있다. 미국의 경우 수혈용 피 대부분이 대형 병원에 비축되어 있다. 지역의 작은 병원의 경우 1-2명의 환자를 위한 응급 피를 보관하고 있을 뿐이다. 이런 상황에서 혈액 배달 드론은 유용하게 기능할 수 있다. 그렇다고 벌떼처럼 드론이 도심을 떠다니는 일은 당분간 없을 것이다. 미국의 경우 드론사업과 관련하여 현재까지 매우 엄격한 '사전허가'가 요구된다. 그 누구도 하늘을 떠다니는 드론이 폭풍과 같은 기상 이변을 만나 자신의 머리 위로 또는 주택 위로 떨어지는 것을 원치 않기 때문이다.

  • PDF

Utilization of Weather, Satellite and Drone Data to Detect Rice Blast Disease and Track its Propagation (벼 도열병 발생 탐지 및 확산 모니터링을 위한 기상자료, 위성영상, 드론영상의 공동 활용)

  • Jae-Hyun Ryu;Hoyong Ahn;Kyung-Do Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.245-257
    • /
    • 2023
  • The representative crop in the Republic of Korea, rice, is cultivated over extensive areas every year, which resulting in reduced resistance to pests and diseases. One of the major rice diseases, rice blast disease, can lead to a significant decrease in yields when it occurs on a large scale, necessitating early detection and effective control of rice blast disease. Drone-based crop monitoring techniques are valuable for detecting abnormal growth, but frequent image capture for potential rice blast disease occurrences can consume significant labor and resources. The purpose of this study is to early detect rice blast disease using remote sensing data, such as drone and satellite images, along with weather data. Satellite images was helpful in identifying rice cultivation fields. Effective detection of paddy fields was achieved by utilizing vegetation and water indices. Subsequently, air temperature, relative humidity, and number of rainy days were used to calculate the risk of rice blast disease occurrence. An increase in the risk of disease occurrence implies a higher likelihood of disease development, and drone measurements perform at this time. Spectral reflectance changes in the red and near-infrared wavelength regions were observed at the locations where rice blast disease occurred. Clusters with low vegetation index values were observed at locations where rice blast disease occurred, and the time series data for drone images allowed for tracking the spread of the disease from these points. Finally, drone images captured before harvesting was used to generate spatial information on the incidence of rice blast disease in each field.

Analysis of Orthomosaic and DSM Generation Using an Assembled Small-sized Drone (조립식 소형 드론을 이용한 Orthomosaic 및 DSM 생성 연구)

  • Kim, Jong Chan;Kim, Byung-Guk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.195-202
    • /
    • 2017
  • Ortho images created by aerial photogrammetry have been used in large areas but they are uneconomical for small areas and continuous change observation. The drones have been developed for military purposes, and recently they are being used crop management and analysis, broadcast relay, meteorological observation and disaster investigation and so on. Also there were a lot of studies of expensive commercial drone. In this paper, lower price self-assembly drone usable for in small areas, Obtained images and produced Orthomosaic and DSM using mission planner which is a normal digital camera and open source program, and postprocessing was used Pix4d software. GCP errors are X-coordinate 3.4cm, Y-coordinate 2.4cm, Z-coordinate 4.2cm. It seems like the self-assembly drone can be used for various fields.

Development of a Deep-Learning Model with Maritime Environment Simulation for Detection of Distress Ships from Drone Images (드론 영상 기반 조난 선박 탐지를 위한 해양 환경 시뮬레이션을 활용한 딥러닝 모델 개발)

  • Jeonghyo Oh;Juhee Lee;Euiik Jeon;Impyeong Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1451-1466
    • /
    • 2023
  • In the context of maritime emergencies, the utilization of drones has rapidly increased, with a particular focus on their application in search and rescue operations. Deep learning models utilizing drone images for the rapid detection of distressed vessels and other maritime drift objects are gaining attention. However, effective training of such models necessitates a substantial amount of diverse training data that considers various weather conditions and vessel states. The lack of such data can lead to a degradation in the performance of trained models. This study aims to enhance the performance of deep learning models for distress ship detection by developing a maritime environment simulator to augment the dataset. The simulator allows for the configuration of various weather conditions, vessel states such as sinking or capsizing, and specifications and characteristics of drones and sensors. Training the deep learning model with the dataset generated through simulation resulted in improved detection performance, including accuracy and recall, when compared to models trained solely on actual drone image datasets. In particular, the accuracy of distress ship detection in adverse weather conditions, such as rain or fog, increased by approximately 2-5%, with a significant reduction in the rate of undetected instances. These results demonstrate the practical and effective contribution of the developed simulator in simulating diverse scenarios for model training. Furthermore, the distress ship detection deep learning model based on this approach is expected to be efficiently applied in maritime search and rescue operations.

Insurance system for legal settlement of drone accidents (드론사고의 법적 구제에 관한 보험제도)

  • Kim, Sun-Ihee;Kwon, Min-Hee
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.33 no.1
    • /
    • pp.227-260
    • /
    • 2018
  • Recently, as the use of drones increases, the risk of drone accidents and third-party property damage is also increasing. In Korea, due to the recent increase in drone use, accidents have been frequently reported in the media. The number of reports from citizens, and military and police calls regarding illegal or inappropriate drone use has also been increasing. Drone operators may be responsible for paying damages to third parties due to drone accidents, and are liable for paying settlements due to illegal video recording. Therefore, it is necessary to study the idea of providing drone insurance, which can mitigate the liability and risk caused by drone accidents. In the US, comprehensive housing insurance covers damages caused by recreational drones around the property. In the UK, when a drone accident occurs, the drone owner or operator bears strict liability. Also, in the UK, drone insurance joining obligation depends on the weight of the drones and their intended use. In Germany, in the event of personal or material damage, drone owner bears strict liability as long as their drone is registered as an aircraft. Germany also requires by law that all drone owners carry liability insurance. In Korea, insurance is required only for "ultra-light aircraft use businesses, airplane rental companies and leisure sports businesses," where the aircraft is "paid for according to the demand of others." Therefore, it can be difficult to file claims for third party damages caused by unmanned aerial vehicles in personal use. Foreign insurance companies are selling drone insurance that covers a variety of damages that can occur during drone accidents. Some insurance companies in Korea also have developed and sell drone insurance. However, the premiums are very high. In addition, drone insurance that addresses specific problems related to drone accidents is also lacking. In order for drone insurance to be viable, it is first necessary to reduce the insurance premiums or rates. In order to trim the excess cost of drone insurance premiums, drone flight data should be accessible to the insurance company, possibly provided by the drone pilot project. Finally, in order to facilitate claims by third parties, it is necessary to study how to establish specific policy language that addresses drone weight, location, and flight frequency.