• Title/Summary/Keyword: 기상관측센서

Search Result 160, Processing Time 0.028 seconds

A Study on the Retrievals of Downward Solar Radiation at the Surface based on the Observations from Multiple Geostationary Satellites (정지궤도 위성자료를 이용한 지표면 도달 태양복사량 연구)

  • Jee, Joon-Bum;Zo, Il-Sung;Lee, Kyu-Tae
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.123-135
    • /
    • 2013
  • The reflectance observed in the visible channels of a geostationary meteorological satellite can be used to calculate the amount of cloud by comparing the reflectance with the observed solar radiation data at the ground. Using this, the solar radiation arriving at the surface can be estimated. This study used the Meteorological Imager (MI) reflectance observed at a wavelength of 675 nm and the Geostationary Ocean Color Imager (GOCI) reflectance observed at similar wavelengths of 660 and 680 nm. Cloudy days during a typhoon and sunny days with little cloud cover were compared using observation data from the geostationary satellite. Pixels that had more than 40% reflectance in the satellite images showed less than 0.3 of the cloud index and blocked more than 70% of the solar energy. Pixels that showed less than 15% reflectance showed more than 0.9 of the cloud index and let through more than 90% of the solar energy to the surface. The calculated daily accumulated solar radiation was compared with the observed daily accumulated solar radiation in 22 observatories of the Korean Meteorological Administration. The values calculated for the COMS and MTSAT MI sensors were smaller than the observation and showed low correlations of 0.94 and 0.93, respectively, which were smaller than the 0.96 correlation coefficient calculated for the GOCI sensor. The RMSEs of MTSAT, COMS MI and GOCI calculation results showed 2.21, 2.09, 2.02 MJ/$m^2$ in order. Comparison of the calculated daily accumulated results from the GOCI sensor with the observed data on the ground gave correlations and RMSEs for cloudy and sunny days of 0.96 and 0.86, and 1.82 MJ/$m^2$ and 2.27 MJ/$m^2$, respectively, indicating a slightly higher correlation for cloudy days. Compared to the meteorological imager, the geostationary ocean color imager in the COMS satellite has limited observation time and observation is not continuous. However, it has the advantage of providing high resolution so that it too can be useful for solar energy analysis.

Vertical Measurement and Analysis of Meteorological Factors Over Boseong Region Using Meteorological Drones (기상드론을 이용한 보성 지역 기상 인자의 연직 측정 및 분석)

  • Chong, Jihyo;Shin, Seungsook;Hwang, Sung Eun;Lee, Seungho;Lee, Seung-Hyeop;Kim, Baek-Jo;Kim, Seungbum
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.575-587
    • /
    • 2020
  • Meteorological phenomena are observed by the Korea Meteorological Administration in a variety of ways (e.g., surface, upper-air, marine, ocean, and aviation). However, there are limits to the meteorological observation of the planetary boundary layer (PBL) that greatly affects human life. In particular, observations using a sonde or aircraft require significant observational costs in economic terms. Therefore, the goal of this study was to measure and analyze the meteorological factors of the vertical distribution of the see-land breeze among local meteorological phenomena using meteorological drones. To investigate the spatial distribution of the see-land breeze, a same integrated meteorological sensor was mounted on each drone at three different points (seaside, bottom of mountain, and mountainside), including the Boseong tall tower (BTT) at the Boseong Standard Weather Observatory (BSWO) in the Boseong region. Vertical profile observations for air temperature, relative humidity, wind direction, wind speed, and air pressure were conducted up to 400 m every 30 minutes from 1100 LST to 1800 LST on August 4, 2018. The spatial characteristics of meteorological phenomena for temperature, relative humidity, and atmospheric pressure were not shown at the four points. Strong winds (~8 m s-1) were observed from the midpoint (~100 m) at strong solar radiation hour, and in the afternoon the wind direction changed from the upper layer at the inland area to the west wind. It is expected that the analysis results of the lower atmospheric layer observed using the meteorological drone may help to improve the weather forecast more accurately.

Moon Imaging for the Calibration of the COMS Meteorological Imager (천리안 위성의 기상탑재체 보정을 위한 달 영상 획득 방안)

  • Park, Bong-Kyu;Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.44-50
    • /
    • 2010
  • COMS accommodates multiple payloads; Meteorological Image(MI), Ocean Color Imager(GOCI) and Ka-band communication payloads. In order to improve the quality of MI visible channel, the moon image has been taken into account as backup reference in addition to Albedo monitoring. However, obtaining the moon image by adding special mission schedule is not recommended after IOT, because we may miss chances to obtain meteorological images during the time slots for special imaging. As an alternative solution, an approach extracting moon image from MI FD(Full Disk) image has been proposed when the moon is positioned near to the earth. However, prediction of acquisition time of moon image is somewhat difficult as the moon moves while the MI is scanning type sensor. And the moon can not be seen when it is behind the earth or outside of FD field of view. This paper discusses how effectively the moon can be detected by the MI FD imaging. For that purpose, this paper describes an approach taken to predict the time when the moon image is achievable and then introduces the results obtained from computer simulation.

Performance Test of the Boltwood Cloud Sensor for the Meteorological Condition of Optical Satellite Observation (위성 광학관측 가능 기상상태 판단을 위한 Boltwood 구름센서 성능 시험)

  • Bae, Youngho;Yoon, Joh-Na;Jo, Jung Hyun;Moon, Hong-Kyu;Choi, Young-Jun;Yim, Hong-Suh;Park, Youngsik;Park, Sun-Youp;Park, Jang-Hyun;Choi, Jin;Kim, Myung-Jin;Kim, Jihye
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.3
    • /
    • pp.32-40
    • /
    • 2013
  • The Boltwood Cloud Sensor is meteorological sensor that is used to estimate an amount of clouds in the sky. This sensor will be installed for OWL(Optical Wide-field patroL) telescope and observatory system of Korea Astronomy and Space Science. Before applying this sensor to an observatory system, we performed test observations at Chungbuk University Observatory at Jincheon, Chungbuk. During the test run, a significant correlation between air temperature difference and the number of visible stars recorded in the CCD frames has not been found. This preliminary result can be attributed to test environment of the observation and our lack of knowledge on calculation algorithm as well as the hardware system of the Boltwood Cloud Sensor.In this paper, we present the procedure and the result of the performance test employing the cloud sensor.

A Study on the Development of a High Resolution Snow Gauge (정밀 강설량계 개발을 위한 연구)

  • Lee, Bu-Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.4
    • /
    • pp.270-274
    • /
    • 2006
  • This study proposes a new method for automatic recording of snowfall by a mass unit which is required in weather forecast and hydrology research. In this method the weight of a buoyancy bar submerged in a liquid is measured by a strain-gauge loadcell. Field test results of the strain-gauge loadcell showed good stability as well as high accuracy. Indoor tests of the instrument using a large tank of 120 cm diameter and 25 cm height connected to a small tank measured the liquid level with a good stability, showing a measurement error of less than 0.1 mm in a 100 mm range. This method of water depth measurement is very useful in measuring snowfall because it has no limitation on the funnel size of the instrument. In addition, an antifreezing solution instead of water used in the tank makes a heating system for melting snow unnecessary.

정지궤도 통신해양기상위성 기술특성 분석

  • Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.89-95
    • /
    • 2003
  • In this study, the technical characteristics of geosynchronous multi-mission satellites are investigated, compared to communication satellites. Geosynchronous meteorological satellites, whose imaging data is normally shared with the international society, have large coverage for monitoring and data service. Also the higher pointing accuracy is requested to keep the spatial resolution of 1-4km, compared to those of communication satellites. Cryogenic thermal control is needed for the better performance of IR sensors and the contamination protection of optical parts should be considered. On the other hands, for the successful development of the multi-mission satellite COMS, which will be launched in 2008, the special features of attitude control, electrical power, thermal control and mechanism are investigated.

  • PDF

Accuracy Analysis of GPS-derived Precipitable Water Vapor According to Interpolation Methods of Meteorological Data (기상자료 보간 방법에 의한 GPS기반 가강수량 산출 정확도 분석)

  • Kim, Du-Sik;Won, Ji-Hye;Kim, Hye-In;Kim, Kyeong-Hui;Park, Kwan-Dong
    • Spatial Information Research
    • /
    • v.18 no.4
    • /
    • pp.33-41
    • /
    • 2010
  • Approximately 100 permanent GPS stations are currently operational in Korea. However, only 10 sites have their own weather sensors connected directly to the GPS receiver. Thus. calculation of meteorological data through interpolation of AWS data are needed to determine precipitable water vapors at a specific GPS station without a meteorological sensor. This study analyzed the accuracy of two meteorological data interpolation methods called reverse sea level correction and kriging. As a result, the root-mean square-error of reverse sea level correction were seven times more accurate in pressure and twice more accurate in temperature than the kriging method. For the analysis of PWV accuracy, we calculated GPS PWV during the summer season in :2008 by using GPS observation data and interpolated meteorological data by reverse sea level correction. And, we compared GPS PWV s based on interpolated meteorological data with those from radiosonde observations and GPS PWV s based on onsite GPS meteorological sensor measurements. As a result, the accuracy of GPS PWV s from our interpolated meteorological data was within the required operational accuracy of 3mm.

A Study on Development of the Smart Weather Watching Systems (무선통신을 이용한 스마트 기상 측정 시스템 개발에 관한 연구)

  • Choi, Won-Huyck;Jie, Min-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.3
    • /
    • pp.449-454
    • /
    • 2012
  • According to the development of the ubiquitous computing technic today, the sensor base system is becoming a big issue in IT fields. This study is to develop a smart weather watching system which allows us to carry out temperature measuring without regard to location and altitude using the sensor devices. this system is composed of the wireless receiver module(PC base) and the wireless measuring module(ATmega2560 base).

해양기상신호표지 구축현황

  • Jeong, Gyeong-Gyu;Kim, Hyeok;Park, U-Gyeong;Choe, Dae-Yeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.103-104
    • /
    • 2018
  • 항만, 연안해역의 주요지점에 위치한 항로표지시설에 해양기상 관측센서를 설치하여 국지적 해양기성 정보를 실시간 제공으로 해양교통안전을 도모하고자 해양기상신호표지를 구축하였음.

  • PDF