• Title/Summary/Keyword: 기름유출량

Search Result 32, Processing Time 0.024 seconds

A Study on the Effect of the Orifice Shape on Oil Outflow from a Damaged Ship (사고 선박 손상부 형상이 기름 유출량에 미치는 영향 연구)

  • Park, Il-Ryong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.620-631
    • /
    • 2022
  • This paper shows the numerical prediction of the change in oil outflow rate according to the orifice shape of a damaged ship by using the computational fluid dynamics (CFD) analysis method. It also provides discharge coefficients for various orifice shapes to be used in theoretical prediction approaches. The oil outflow from the model ship was analyzed using a multiphase flow method under the condition that the Froude and Reynolds number similitudes were satisfied. The present numerical results were verified by comparing them with the available experimental data. Along with the aspect ratio of the orifice and the wall thickness of the cargo tank, the effects of the orifice shapes defined by mathematical figures on the oil outflow were investigated. To consider more realistic situations, the investigation of the ef ect of the crushed iron plate around the damaged part was also included. The numerical results confirmed the change in oil outflow time for various shapes of the damaged part of the oil tank, and discharge coefficients that quantify the viscous effects of those orifice shapes were extracted. To verify the predicted discharge coefficients, they were applied to an oil spill estimation equation. As a result, a good agreement between the CFD and theoretical results was obtained.

Effects of Stranded Oil on Seawater Infiltration in a Tidal flat Environment (조간대에 표착한 기름이 해수의 침투에 미치는 영향)

  • Cheong Jo, Cheong
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.75-80
    • /
    • 2003
  • Understanding the seawater infiltration into tidal flat sediments is very important, because it is significantly correlated with the supply of dissolved oxygen, nutrients and organic matter to benthic organisms for survival. However oil blocks interstitial spaces of sediments, reduces seawater infiltration and results in the decrease in oxygen, nutrients and other food supply to benthic communities. The penetration depth of the stranded oil into the sediments is one of the most significant information to know the effect of spilled oil on biological communities and to set up a cleaning method. So we initiated this study to quantify the penetration behavior of spilled oil and to evaluate the influence of the penetrated oil on seawater infiltration in tidal flat environment and its ecological implications. The penetration depth of the crude oil into the tidal flat sediments was two times deeper than that of the fuel oil C, and the depth was significantly affected by stranded oil volume. However, the penetration depth of stranded oil was abruptly dropped at first falling tide but not significantly fluctuated after that. Moreover, hydrocarbon concentration showed the highest within the upper 2 cm. Seawater infiltration was decreased in proportion to the stranded oil volume. The seawater infiltration was more affected by the penetrated fuel oil C about 1.7 times than the crude oil, because the interstitial spaces of the top of sediments were more cleared by the fuel oil C. Therefore, quick cleaning actions for penetrated oil will be necessary for recovery of seawater infiltration because the seawater contains oxygen and nutrients necessary for the survival of benthic organisms in tidal flat.

A Study on Development of Oil Boom Measurement Program (OBM Promgram) in Oil Spill (기름유출사고시 소요 오일붐 측정프로그램(OBM Program) 개발에 관한 연구)

  • Moon, Jung-Hwan;Yun, Jong-Hwui;Ha, Min-Jae;Jeon, Da-Woon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.227-228
    • /
    • 2011
  • 이 연구는 기름 유출 사고 시 해상에서 실시되는 방제활동을 보다 신속하고 효과적으로 실시하기 위해 사고초기부터 오일붐의 필요량을 신속하고 간단하게 제시해주는 프로그램의 개발에 대하여 알아보려고 한다. 유출유의 기계적회수를 위해 유회수기, 임시저장탱크의 필요수량은 제시되었으나, 오일붐은 제시되지 못하고 있다. 본 연구에서는 해양선진국 및 국제해사기구(IMO)에서 제시한 오일붐의 필요수량에 대한 방법들을 활용해 프로그램에서 유출규모, 유막특징의 입력을 통해 오일붐의 최소 및 권고량이 제시되도록 NI(National Instuments)사(社)의 LabVIEW 2010버전으로 프로그래밍 되었다. 기름유출 시 OBM Program을 이용해 누구나 쉽게 오일붐 필요량을 파악할 수 있고, 신속하게 오일붐의 필요량이 파악되어 방제활동 대응시간을 단축시켜주며, 단축된 대응시간만큼 피해규모의 축소를 기대할 수 있다.

  • PDF

A review of Deepwater Horizon Oil Budget Calculator for its Application to Korea (딥워터 호라이즌호 유출유 수지분석 모델의 국내 적용성 검토)

  • Kim, Choong-Ki;Oh, Jeong-Hwan;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.4
    • /
    • pp.322-331
    • /
    • 2016
  • Oil budget calculator identifies the removal pathways of spilled oil by both natural and response methods, and estimates the remaining oil required response activities. A oil budget calculator was newly developed as a response tool for Deepwater Horizon oil spill incident in Gulf of Mexico in 2010 to inform clean up decisions for Incident Comment System, which was also successfully utilized to media and general public promotion of oil spill response activities. This study analyzed the theoretical background of the oil budget calculator and explored its future application to Korea. The oil budge calculation of four catastrophic marine pollution incidents indicates that 3~8% of spilled oil was removed mechanically by skimmers, 1~5% by in-situ burning, 4.8~16% by chemical dispersion due to dispersant operation, and 37~56% by weathering processes such as evaporation, dissolution, and natural dispersion. The results show that in-situ burning and chemical dispersion effectively remove spilled oil more than the mechanical removal by skimming, and natural weathering processes are also very effective to remove spilled oil. To apply the oil budget calculator in Korea, its parameters need to be optimized in response to the seasonal characteristics of marine environment, the characteristics of spilled oil and response technologies. A new algorithm also needs to be developed to estimate the oil budget due to shoreline cleanup activities. An oil budget calculator optimized in Korea can play a critical role in informing decisions for oil spill response activities and communicating spill prevention and response activities with the media and general public.

Prediction of Oil Amount Leaked from Damaged Tank Using 2-dimensional Particle Simulation (파손된 탱크의 기름 유출량 산정을 위한 2차원 입자법 시뮬레이션)

  • Nam, J.W.;Hwang, S.C.;Park, J.C.;Kim, M.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.278-285
    • /
    • 2011
  • In the present study, the numerical prediction of the oil amount leaked from the hole of a damaged tank is investigated using the improved MPS (Moving Particle Semi-implicit) method, which was originally proposed by Koshizuka and Oka (1996) for incompressible flow. The governing equations, which consist of the continuity and Navier-Stokes equations, are solved by Lagrangian moving particles, and all terms expressed by differential operators should be replaced by the particle interaction models based on a Kernel function. The simulation results are validated though the comparison with the analytic solution based on Torricelli's equilibrium relation. Furthermore, a series of numerical simulations under the various conditions are performed in order to estimate more accurately the initial amount of leaked oil.

  • PDF

Evaluation of Affecting Factors on Formation of Oil-Mineral Aggregates for Stranded Oil on Intertidal Flat (연안 조간대에 표착한 유출유의 OMA 형성 영향인자의 평가)

  • Cheong, Cheong-Jo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.151-156
    • /
    • 2009
  • The purpose of this study is to evaluate the affecting factors on Oil-Mineral Aggregates(OMA) for stranded oil on intertidal flat, because the OMA formation enhances the oil dispersion and biodegradation rates. We choose the affecting factors such as spilled oil concentrations(50, 100, 200, 300, 400, 500 mg/L), mineral concentration(100, 200, 500, 1,000, 2,000, 4,000 mg/L), salinity(10, 20, 30, 40 psu), shaking time(1, 2, 4, 8, 12, 24 hr) and applied dispersant volume(0, 5, 10, 15, 20%). Major conclusions derived from this study are as follows. It was observed that the kaolinite interacts three times strongly with crude oil than quartz. OMA formation was enhanced with increasing of spilled oil concentrations, whereas the increase of salinity rarely affected the OMA formation. The shaking time for OMA formation affected positively with kaolinite, but quartz was irrespective the shaking time. The applied dispersant enhanced the OMA formation by 13% in kaolinite and 56% in quartz experimental condition.

  • PDF

Discussion on the Criterion for the Determination of On-Water Oil Removal Resource Requirement in Korea (우리나라 기름오염 방제능력 확보기준의 타당성)

  • Kang Seong-Gil;Sung Hong-Gun;Lee Moonjin;Choi Hyuek-Jin;Yu Jeong-Seok;Kang Chang-Gu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.4
    • /
    • pp.3-18
    • /
    • 2002
  • The present study was carried out to discuss the suitability of the criterion for the determination of the on-water oil removal resource requirement in Korea by comparison with the US criterion. According to the present criterion in Korea, the on-water response operation against the worst case discharge assuming the oil spillage of 60,000 ton from the accident of DWT 300,000 tanker requires the oil recovery capacity of 19,425 kl/hr (on-water recovery volume 20,000 ton). Under the US criterion, the recovery capacity of 16,667 kl/hr is required to respond to oil spill accident of the worst case discharge from the DWT 300,000 tanker. The result shows that resource requirement from the Korean criterion is 16% higher than US criterion, indicating that thc Korean criterion is reasonable.

  • PDF

A CFD Study of Oil Spill Velocity from Hole in the Hull of Oil Tanker (유조선 선체 파공에 따른 원유 유출 유속의 CFD 연구)

  • Choi, Dooyoung;Lee, Jungseop;Paik, Joongcheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.71-71
    • /
    • 2018
  • Sea pollution accidents have been occurred due to the increase of marine ship traffic. Oil spill from the hull hole induced by tanker collision results in the huge sea pollution. Proper and prompt reaction on such oil spill disaster is needed to minimize the damage. Thru-hull emergency wood plug is typically used to manually close small holes, while it is required to develop some mechanical devices for closing large holes in the hull due to huge fluid pressure. Accurate estimation of oil discharge and velocity from such holes are important to develop proper device to control hull hole damage. High resolution CFD modeling investigation on the configurations of hull hole of 7.5 m initial depth and 30 cm diameter, which was observed in the oil spill accident of the Hebei Sprit off the west coast of Korea in 2007, has been carried out to compute the oil spill velocity distribution in terms of flow depth. Friction loss due to the viscous flow and the discharge coefficient of crude oil with specific gravity SG = 0.85 and viscosity of $4-12cP(mPa{\cdot}s)$ at the temperature of $20^{\circ}C-100^{\circ}C$ are presented in terms of Reynolds number based on the results of high-resolution CFD modeling.

  • PDF

Analysis of Non-point Source Pollutant in Kumho River Basin by SWAT Model (SWAT 모형에 의한 금호강 유역 비점오염원 분석)

  • Lee, Jae Yeong;Kwon, Hun Gak;Im, Tae Hyo;Han, Kun Yeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.556-556
    • /
    • 2015
  • 금호강 유역은 낙동강 유역에 위치한 22개 중권역에서도 본류에 유입되는 하천 규모가 크기 때문에 본류에 큰 영향을 미친다. 이로 인해 금호강에서 유출되는 유량과 비점오염원 부하량에 대한 정확한 분석이 반드시 필요한 상황이다. 더욱이, 기후변화로 인해 태풍이나 국지성 호우의 발생이 빈번해지고, 그 규모 역시 과거에 비하여 상당히 크기 때문에 각 유역에 대한 정확한 수문 및 수질 조사가 요구되고 있다. 점오염원에 의한 부하량은 강우량과 관계없이 발생되지만 비점오염원에 의한 부하량은 강우에 따른 유출 현상 때문에 매년 변동이 심하다. 도시지역의 경우 불투수 면적이 증가하고 있으며 지표면에 흡착된 오염물질들이 지표면을 통과하지 못하고 우수와 함께 하천으로 유입된다. 또한 도시화 산업화로 인해 교통량이 증가하면서 도로에 떨어진 기름, 타이어 분진 등이 강우 시 하천으로 유입된다. 특히 금호C지역의 공업단지의 경우 강우 유출수에 고농도의 오염물질이 혼입되어 있으며, 지표면에 퇴적되는 오염물질의 양도 주거지역보다 훨씬 높으며 강우 시 유독한 수질오염물질이 일시에 다량으로 하천에 유입된다. 시가지는 차지하는 면적이 각 소유역당 $20km^2$이내로 크지 않지만 BOD, T-N, T-P 모든 항목에서 영향이 큰 것으로 나타났고, 산림은 가장 큰 면적을 차지하고 있지만 BOD를 제외한 항목에서 영향을 미치지 않는 것으로 나타났다. 농경지의 경우 각 소유역당 $5{\sim}45km^2$의 면적을 차지하지만 전체적으로 영향을 많이 미치는 것으로 나타났으며 모두 T-N에 대한 영향이 큰 것으로 나타났다. 금호강 유역은 상류에서는 농경지의 비율이 높아 비료나 토양침식에 의한 비점오염에 의한 오염이 큰 것으로 나타났고, 하류에서는 영천시, 대구광역시가 위치하고 있어 생활하수와 공업용폐수 등에 의한 점오염과 불투수 지역이 많아 우수와 함께 하천으로 유입되는 비점오염원에 의한 오염 모두 큰 것으로 나타났다. 금호강유역의 효율적인 비점오염관리를 위해서는 금호강 유역 상류지역의 농업지역과 하류지역의 도시지역에서 필요한 비점오염 부하량 감소 방안에 대한 연구가 필요할 것으로 판단된다.

  • PDF

Development of an Unmanned Conveyor Belt Recovery Skimmer for Floating Marine Debris and High Viscosity Oil (무인 컨베이어 벨트식 부유쓰레기 및 고점도유 회수장비 개발 연구)

  • Han, Sang-goo;Lee, Won-ju;Jang, Se-hyun;Choi, Jae-hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.2
    • /
    • pp.208-215
    • /
    • 2017
  • When persistent oil, such as crude oil or Bunker C oil, is spilled at sea, viscosity increases through the weathering process. Equipment that can collect this oil when mixed with floating marine debris is very limited. In this study, devices that can be attached to the outside of existing oil skimmers have been applied to the inside of the main body, to develop an unmanned conveyor belt type floating marine debris and high viscosity oil recovery skimmer, which is composed of a conveyor belt, a sweeper with a forced inflow device, and a collection tank equipped with a buoyant body. The resulting skimmer was operated at a speed of 1.2 knots at a distance of 30 m in a sea area test. It was stable when moving laterally in any direction. An oil recovery performance test was conducted using a portable storage tank, and oil was recovered from a minimum of $7.8k{\ell}/h$ to a maximum of $23.3k{\ell}/h$. Moreover, recovery of $7.7k{\ell}/h$ was obtained in a wave water tank test with floating marine debris such as PET bottles and oil mixed. If the equipment developed in this study was used in the field for oil pollution accidents, it could be expected to contribute to improved response capability. We believe our equipment could be used in further studies to improvement the performance of existing portable oil skimmers.