• Title/Summary/Keyword: 기뢰 탐지

Search Result 11, Processing Time 0.022 seconds

Analysis of the Effectiveness of Autonomous Unmanned Underwater Vehicle Mine Search Operation by Side Scan Sonar Characteristics (측면주사소나 특성에 따른 자율무인잠수정 기뢰탐색 효과도 분석)

  • Yoo, Tae-Suk;Park, Seok-Joon;Yoon, Seon-Il;Park, Ho-Gyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1077-1085
    • /
    • 2020
  • In order to Mine Countermeasure (MCM), the search is carried out for the expected mine zone. At this time, mine hunting uses Autonomous Unmanned Vehicle(AUV), taking into account the danger of mine and the stability of our forces. Sonar system for identifying buried mines are equipped with Side Scan Sonar(SSS) or Synthetic Aperture Sonar(SAS). This paper describes the analysis of mine hunting effects according to the commercial SSS characteristics. Based on the characteristics of each SSS, the insonified area and recognition probability were modeled, and the analysis was performed according to the search pattern of the AUV. AUV's search pattern defines three patterns depending on the presence or absence of SSS or shaded areas. The analysis results derived search time and detection probability for each search pattern, and finally, the improvement of search depending on the presence or absence of side injection or shaded area.

기뢰전 함정용 전투체계(2)

  • Kim, Yeong-Gil
    • Defense and Technology
    • /
    • no.11 s.177
    • /
    • pp.32-37
    • /
    • 1993
  • 기뢰전 함정(MCMV)의 전투체계는 지휘통제체계를 중심으로 센서, 항해체계, 기뢰제거 시스템을 분산식 구성개념으로 통합하여 모든 하위체계 자료와 지휘통제용 다기능콘솔 사이의 자료를 고속의 데이터버슬 통해 교환하는 것이 일반적인 추세입니다 특히, 원격조종 수중운반체에 센서와 기뢰제거 장치를 탑재하여 전방에 전개시켜 기뢰전 함정 자체의 안전성을 높여줌은 물론, 수중 또는 해저에 부설된 기뢰의 탐지와 식별 무력화 성능을 높여주고 있습니다

  • PDF

A System Design Method of Mine Warfare Using Information for SONAR and MDV (소나와 무인기뢰처리기 정보를 활용한 기뢰전 체계 설계 방안)

  • Kim, Jun-Young;Shin, Chang-Hong;Kim, Kyung-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.12
    • /
    • pp.1243-1249
    • /
    • 2014
  • The naval mine is the explosives that are installed in the water in order to attack surface ships or submarines. So mine warfare is a very important component of naval operations. In this paper, first, understanding of the general concept about mine warfare. Second, introduce the mine hunting progress and mine sweeping progress. And then, suggest the system design method of mine counter measure warfare using several functions. The functions are mine area detection algorithm for side scan sonar image using Adaboost algorithm, and calculation to mine hunting progress rate and mine sweeping progress rate. And techniques that lead the mine disposal vehicle(MDV) to mine.

기뢰의 발전추세와 각국 개발동향

  • Hwang, Gyeong-Seon
    • Defense and Technology
    • /
    • no.9 s.151
    • /
    • pp.48-55
    • /
    • 1991
  • 현대 해군 전략상 적국의 해상 수송 수단의 파괴 또는 봉쇄와 자국 해상교통로의 확보는 전쟁 지속능력의 확보 및 봉쇄여부와 직결되는 매우 중요한 과제로 대두되어 왔다 또한 이러한 해상 통제작전을 수행하는데 가장 값싸고 효율적인 전략병기로서 기뢰의 중요성은 점차 증대되어 왔다 최근의 주요 전술적 발전추세는 부설 심도의 증가, 운용범위의 확대, 탐지파괴범위의 확대, MCCM 능력 강화전술운용 준비태세 향상에 있다

  • PDF

Analysis of target classification performances of active sonar returns depending on parameter values of SVM kernel functions (SVM 커널함수의 파라미터 값에 따른 능동소나 표적신호의 식별 성능 분석)

  • Park, Jeonghyun;Hwang, Chansik;Bae, Keunsung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1083-1088
    • /
    • 2013
  • Detection and classification of undersea mines in shallow waters using active sonar returns is a difficult task due to complexity of underwater environment. Support vector machine(SVM) is a binary classifier that is well known to provide a global optimum solution. In this paper, classification experiments of sonar returns from mine-like objects and non-mine-like objects are carried out using the SVM, and classification performance is analyzed and presented with discussions depending on parameter values of SVM kernel functions.

A Study on Actuation Probability of Underwater Weapon Based on Magnetic Field (Magnetic Field 기반 수중무기체계 발화확률에 관한 연구)

  • Lim, Byeong-Seon;Hong, Sung-Pyo;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1253-1258
    • /
    • 2013
  • This Paper deals with detection and defense methods for underwater weapons because there are so many dangers of underwater weapons not only in the war period but also in the peace time. Underwater mines are the representative strategic arms. The sensors and target detection methods, threat elimination method of mines included in this paper. Among the various sensors of mine, we use the magnetometor for target detection method in the simulation and execute the analysis of magnetic field of detected target ships. It will be also provided that effectiveness of target detection, sweeping method of mine, tactics of mine planning and mine sweeping and so on.

A study on Convergence Weapon Systems of Self propelled Mobile Mines and Supercavitating Rocket Torpedoes (자항 기뢰와 초공동 어뢰의 융복합 무기체계 연구)

  • Lee, Eunsu;Shin, Jin
    • Maritime Security
    • /
    • v.7 no.1
    • /
    • pp.31-60
    • /
    • 2023
  • This study proposes a new convergence weapon system that combines the covert placement and detection abilities of a self-propelled mobile mine with the rapid tracking and attack abilities of supercavitating rocket torpedoes. This innovative system has been designed to counter North Korea's new underwater weapon, 'Haeil'. The concept behind this convergence weapon system is to maximize the strengths and minimize the weaknesses of each weapon type. Self-propelled mobile mines, typically placed discreetly on the seabed or in the water, are designed to explode when a vessel or submarine passes near them. They are generally used to defend or control specific areas, like traditional sea mines, and can effectively limit enemy movement and guide them in a desired direction. The advantage that self-propelled mines have over traditional sea mines is their ability to move independently, ensuring the survivability of the platform responsible for placing the sea mines. This allows the mines to be discreetly placed even deeper into enemy lines, significantly reducing the time and cost of mine placement while ensuring the safety of the deployed platforms. However, to cause substantial damage to a target, the mine needs to detonate when the target is very close - typically within a few yards. This makes the timing of the explosion crucial. On the other hand, supercavitating rocket torpedoes are capable of traveling at groundbreaking speeds, many times faster than conventional torpedoes. This rapid movement leaves little room for the target to evade, a significant advantage. However, this comes with notable drawbacks - short range, high noise levels, and guidance issues. The high noise levels and short range is a serious disadvantage that can expose the platform that launched the torpedo. This research proposes the use of a convergence weapon system that leverages the strengths of both weapons while compensating for their weaknesses. This strategy can overcome the limitations of traditional underwater kill-chains, offering swift and precise responses. By adapting the weapon acquisition criteria from the Defense force development Service Order, the effectiveness of the proposed system was independently analyzed and proven in terms of underwater defense sustainability, survivability, and cost-efficiency. Furthermore, the utility of this system was demonstrated through simulated scenarios, revealing its potential to play a critical role in future underwater kill-chain scenarios. However, realizing this system presents significant technical challenges and requires further research.

  • PDF

Prediction for Underwater Static Magnetic Field Signature Generated by Hull and Internal Structure for Ferromagnetic Ship (강자성 함정 선체 및 내부 장비에 의한 수중 정자기장 신호 예측)

  • Yang, Chang-Seob;Chung, Hyun-Ju;Ju, Hye-Sun;Jeon, Jae-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.5
    • /
    • pp.167-173
    • /
    • 2011
  • Underwater static magnetic field signature for the naval ship has been widely used as the detonating source of the influence mine system because it is possible to make an accurate target detection in the near field although the magnetic field falls off relatively fast with distance in comparison with the underwater radiated noise signal. In this paper, we describe the prediction results about the underwater static magnetic field by the ferromagnetic hull, the internal structures and the main on-board equipment for the target vessel using the commercial FEM software. Also we analyze the degaussing effectiveness for the target vessel through the degaussing coils arrangement.

A Study on Mine Localization of Forward Looking Sonar Considering the Effect of Underwater Sound Refraction (수중 음파 굴절효과를 고려한 전방주시소나 기뢰 위치 추정기법 연구)

  • Sul, Hoseok;Oh, Raegeun;Yang, Wonjun;Yoon, Young Geul;Choi, Jee Woong;Han, Sangkyu;Kwon, Bumsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.231-238
    • /
    • 2022
  • Mine detection has been mainly studied with images of the forward-looking sonar. Forward-looking sonar assumes the propagation path of the sound wave as a straight path, creating the surrounding images. This might lead to errors in the detection by ignoring the refraction of the sound wave. In this study, we propose a mine localization method that can robustly identify the location of mines in an underwater environment by considering the refraction of sound waves. We propose a method of estimating the elevation angle of arrival of the target echo signal in a single receiver, and estimate the mine location by applying the estimated elevation angle of arrival to ray tracing. As a result of simulation, the method proposed in this paper was more effective in estimating the mine localization than the existing method that assumed the propagation path as a straight line.

3-Axis Magnetometer Modeling & Simulation and Implementation for Under Water Weapon System (3축 자력계 Modeling & Simulation 및 수중무기체계 적용)

  • Lim, Byeong-Seon;Han, Seung-Hwan;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.3069-3078
    • /
    • 2014
  • This research handles the performance improvement effect by the Modeling & Simulation and shows the design, implementation, test results of the new 3-axis magnetometer which is the core component of strategic offensive deploying mine. The submarine is modelled by using the commercial electromagnetic field analysis tool on numerical value, and its magnetic field characteristic is predicted in order to apply the new magnetometer to the future underwater weapon system. The method to take the performance test results of new 3-axis magnetometer in the land is shown instead of the real test result in sea by making the miniature submarine.