• Title/Summary/Keyword: 기뢰 탐색함

Search Result 7, Processing Time 0.027 seconds

Analysis of the Effectiveness of Autonomous Unmanned Underwater Vehicle Mine Search Operation by Side Scan Sonar Characteristics (측면주사소나 특성에 따른 자율무인잠수정 기뢰탐색 효과도 분석)

  • Yoo, Tae-Suk;Park, Seok-Joon;Yoon, Seon-Il;Park, Ho-Gyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1077-1085
    • /
    • 2020
  • In order to Mine Countermeasure (MCM), the search is carried out for the expected mine zone. At this time, mine hunting uses Autonomous Unmanned Vehicle(AUV), taking into account the danger of mine and the stability of our forces. Sonar system for identifying buried mines are equipped with Side Scan Sonar(SSS) or Synthetic Aperture Sonar(SAS). This paper describes the analysis of mine hunting effects according to the commercial SSS characteristics. Based on the characteristics of each SSS, the insonified area and recognition probability were modeled, and the analysis was performed according to the search pattern of the AUV. AUV's search pattern defines three patterns depending on the presence or absence of SSS or shaded areas. The analysis results derived search time and detection probability for each search pattern, and finally, the improvement of search depending on the presence or absence of side injection or shaded area.

A System Design Method of Mine Warfare Using Information for SONAR and MDV (소나와 무인기뢰처리기 정보를 활용한 기뢰전 체계 설계 방안)

  • Kim, Jun-Young;Shin, Chang-Hong;Kim, Kyung-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.12
    • /
    • pp.1243-1249
    • /
    • 2014
  • The naval mine is the explosives that are installed in the water in order to attack surface ships or submarines. So mine warfare is a very important component of naval operations. In this paper, first, understanding of the general concept about mine warfare. Second, introduce the mine hunting progress and mine sweeping progress. And then, suggest the system design method of mine counter measure warfare using several functions. The functions are mine area detection algorithm for side scan sonar image using Adaboost algorithm, and calculation to mine hunting progress rate and mine sweeping progress rate. And techniques that lead the mine disposal vehicle(MDV) to mine.

An Analysis of Required Technologies for Developing Unmanned Mine Countermeasure System Based on the Unmanned Underwater Vehicle (무인잠수정 기반 기뢰대항전체계 개발을 위한 소요기술 분석)

  • Lee, Ki-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.579-589
    • /
    • 2011
  • One of the most significant UUV(Unmanned Underwater Vehicle) applications is MCM(Mine Countermeasure), which makes good use of UUV characteristics to provide covert, rapid, controlled and efficient survey of a potential minefield without risking a human operator. In this paper, a survey of the today's MCM missions where UUVs will play a role, the vehicle systems that are either under development or planned in the future are presented. And examines principal technical challenges and outline new enabling technologies. Particularly, this paper analyses current approaches to tacking these technologies and technological limitation of UUVs as a MCM platform, and research efforts to develop the technology necessary to meet the domestic MCM mission needs.

Development of Measurement System for the Underwater Explosion Shock Test of Naval Ships (함정의 수중폭발 충격시험을 위한 계측장비 시스템 개발)

  • 박일권;조대승;김종철
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.66-74
    • /
    • 2003
  • In non-contact underwater explosion shock test of a real naval ship, measurement of shock loadings and responses should require onboard system to be able to safely trigger an explosive and to simultaneously and successfully measure scores of shock signals in the deteriorated environment. For this purpose, we have developed a shock-hardened measurement system resistible to 170g peak acceleration having 4 msec duration by resiliently mounting general purpose measurement instruments in racks. The system can simultaneously measure and record 200 signals to evaluate shock leadings and responses of the test ship by triggering an explosive and measurement instruments at the same time. We prove the performance of the developed system by introducing the signal acquisition results from of a real ship underwater shock test, firstly performed in Korea.

Trends and Applications on Multi-beam Side Scan Sonar Sensor Technology (측면주사음탐기 센서 기술 동향 및 응용)

  • Kye, J.E.;Cho, J.I.;Yoo, W.P.;Choi, S.L.;Park, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.28 no.6
    • /
    • pp.167-179
    • /
    • 2013
  • 측면주사음탐기(side scan sonar) 센서는 해저면의 영상을 실시간으로 탐색하는 장비로서 해양탐사 및 지질조사, 해저통신 및 어초조사, 기뢰 및 잠수정 탐색 등 해양탐사와 관련한 대표적 장비라고 할 수 있다. 센서는 해저와 목표물을 표시하기 위해 소나 플랫폼의 움직임을 사용하며, 동작주파수 범위는 20kHz~500kHz이다. 이 주파수는 요구되는 깊이와 목표물의 크기에 의해서 결정된다. 센서는 수직으로 $45^{\circ}$, 수평으로 $2^{\circ}$ 정도의 신호전파 방사각도 폭을 가진다. 최근에는 해양탐사와 개발을 위해 빠른 스캔속도와 정확한 정보, 고해상도의 영상을 얻기 위해 해저면에 대한 다중빔 영상센서의 핵심기술로 활용되면서 그 활용성과 중요성이 점차 증가되고 있다. 본고에서는 측면주사소나 센서의 기본 원리 및 종류, 디중빔측면주사소나 기술동향, 응용분야의 사례를 소개함으로써, 국내 기반기술 및 상용화 개발이 취약한 측면주사 음탐기 센서에 대한 이해를 돕고자 한다.

A Study on Unmaned Underwater Vehicle Operational Performance Analysis for Mine Search Operation (무인잠수정 기뢰 탐색 효과도 분석)

  • Hwang, A-Rom;Kim, Moon-Hwan;Lee, Sim-Yong;Yoon, Jae-Moon;Kim, Chan-Ki
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.781-787
    • /
    • 2011
  • Mine countermeasure missions(MCMs) may induce the loss of human and ship because of the covert of mine. In recent years, unmanned underwater vehicles(UUVs) have emerged as viable technical solution for conductimg underwater search, surveillance, and clearance operations in support of mine countermeasure missions because of her autonomy and long time endurance capability. This paper introduces a technical approach to mine countermeasure mission effectiveness analysis and presents some simulation-based analysis results for engineering of the UUV system definition which could be support analysis of alternatives for system definition and design.

A Study of Simulation Model for Effectiveness Analysis Simulation of Unmaned Underwater Vehicle for Mine Searching (기뢰 탐색 작전용 무인잠수정 효과도 분석 시뮬레이션을 위한 시뮬레이션 모델 연구)

  • Hwang, A-Rom;Kim, Moon-Hwan;Lee, Sim-Yong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.410-416
    • /
    • 2012
  • In recent years, unmanned underwater vehicles(UUVs) have emerged as viable technical solution for conducting underwater search, surveillance, and clearance operations in support of mine countermeasure missions(MCMs) because of her autonomy and long time endurance capability. It is necessary for UUV for MCM system design to define system specification from various configuration alternatives. This paper introduces a simulation model for mine countermeasure mission effectiveness analysis and presents some simulation results under various tide conditions for validation of the proposed simulation model.