• Title/Summary/Keyword: 기둥직경

Search Result 77, Processing Time 0.021 seconds

Design Concept of Beams Reinforced by Deformed Bars and Non-Prestressed Strands in Combination (비긴장강연선과 철근이 혼용된 보의 설계방안)

  • Noh, Sam-Young;Jo, Min-Joo;Kim, Jong-Sung;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.18-29
    • /
    • 2013
  • A new precast concrete (PC) beam and column connection system using non-prestressed wire strands was recently developed. The system is composed of one unit of two-storied PC-column and PC-beams with U-shaped ends. The connection part of the column and beams is reinforced by deformed bars and non-prestressed wire strands in combination for the improvement of workability. Structural performance of this system was verified by several experimental studies. The purpose of this study is developing a design concept of the beam reinforced by deformed bars and non-prestressed wire strands in combination, in terms of the cross-sectional analysis, based on the preceded experiment. A minimum and maximum reinforcement ratio and the calculation formula for the strength of flexural member reinforced by reinforcements having different yield strengths are derived based on KBC2009. Under consideration existing research results for the application of high strength reinforcement bars, the design yield strength of the non-prestressed wire strand is suggested. An example for the cross section design, satisfying the serviceability requirements, demonstrates the applicability of the design concept developed in the study.

Morphology and petrology of Jisagae columnar joint on the Daepodong basalt in Jeju Island, Korea (제주도 대포동현무암에 발달한 지삿개 주상절리의 형태학 및 암석학적 연구)

  • Koh Jeong-Seon;Yun Sung-Hyo;Hong Hyun-Chu
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.4 s.42
    • /
    • pp.212-225
    • /
    • 2005
  • This study has been designed to elucidate the morphology of Jisagae columnar joints and the petrography and petrochemistry of Daepodong basalt in Jeju Island, distributed along the 3.5 km-long coast from Seongcheonpo to Weolpyeongdong. Colonnade of the Jisagae columnar joint typically occurs within the upper part of a flow and consists of relatively well-formed basalt columns. Most columns are straight with parallel sides and diameters from 100 cm to 205 cm, $130\~139\;cm$ in maximum. Length of the columns extends up to 20 m. Most columns tend to have 6 or 5 sides but sometimes they have as few as $3\~4$ or as many as 7 or 8 sides. The Daepodong basalt consists of plagioclase, olivine, orthopyroxene, clinopyroxene, ilmenite and magnetite. Plagioclase is labradorite, clinopyroxene is augite, orthopyroxene is bronzite and olivine is chrysolite and hyalosiderite. The Daepodong basalt shows porphyritic texture with matrix of mainly intersetal texture. The Daepodong basalt is plotted into alkali rock series on the TAS diagram. The tectonic setting of the Daepodong basalt represents within plate environment.

Improvement of Earthquake-Resistant Performance of R/C Beam-Column Joint Constructed with High-Strength Concrete Subjected to Cyclic Loading (고강도 철근콘크리트 보-기둥 접합부의 내진성능 개선에 관한 실험적 연구)

  • Ha, Gee-Joo;Kim, Jin-Keun;Chung, Lan
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.1
    • /
    • pp.135-145
    • /
    • 1992
  • With the increasing tendency to construct high rise reinforced concrete building~i, it is required to use high strength materIals, smaller member sections, and larger reinforcing bars, I t is generally recognized that under severe seismic loads beam column jomts may become more critical structural components than other structural elements. In a ductile momentresistmg reinforced concrete frame, the connection of bearncolumn must be capable of resistll1g the large lateral forces caused by seismic actions, The purpose of this experimental study is to evaluate and ll1vestigate the earthquake resistant perform ance of beam-colurrm subassemblies constructed with high-strength concrete cast by the concrete of com¬pressive strength of 700kg / cm2 subjected to reversed cyclic loadings. New approaches for moving the plastic hinging zone away from the column face and preventing the di¬agonal crack in the joint region are adopted to advance the earthquake-resistant performance of beam-column subassemblies using high-strengh concrete under severe earthquake-type loading. Exper¬imental results indicate that the modified new details which are introduced by intermediate reinforcement in the beam over a specific beam length adjacent to the joint are able to attain the stable hysteretic behavior and the enhancement of earthquake-resistant performance. Keywords: high strength concrete: beam-column Joints; seirnic loads(reversed cyclic loading) : earth¬quake-resistant performance; plastic hinge zone: diagonal crack: intermediate reinforce¬ment ; closed strirrup: hysteretic behavior: enhancement .

Formation of Sn-Cu Solder Bump by Electroplating for Flip Chip (플립칩용 Sn-Cu 전해도금 솔더 범프의 형성 연구)

  • 정석원;강경인;정재필;주운홍
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.4
    • /
    • pp.39-46
    • /
    • 2003
  • Sn-Cu eutectic solder bump was fabricated by electroplating for flip chip and its characteristics were studied. A Si-wafer was used as a substrate and the UBM(Under Bump Metallization) of Al(400 nm)/Cu(300 nm)/Ni(400 nm)/Au(20 nm) was coated sequentially from the substrate to the top by an electron beam evaporator. The experimental results showed that the plating ratio of the Sn-Cu increased from 0.25 to 2.7 $\mu\textrm{m}$/min with the current density of 1 to 8 A/d$\m^2$. In this range of current density the plated Sn-Cu maintains its composition nearly constant level as Sn-0.9∼1.4 wt%/Cu. The solder bump of typical mushroom shape with its stem diameter of 120 $\mu\textrm{m}$ was formed through plating at 5 A/d$\m^2$ for 2 hrs. The mushroom bump changed its shape to the spherical type of 140 $\mu\textrm{m}$ diameter by air reflow at $260^{\circ}C$. The homogeneity of chemical composition for the solder bump was examined, and Sn content in the mushroom bump appears to be uneven. However, the Sn distributed more uniformly through an air reflow.

  • PDF

THE ROLE OF A CROSS-BAR AND THE ENLARGEMENT OF A GNOMON IN JOSEON DYNASTY (조선시대 규표의 대형화와 횡량의 역할)

  • Mihn, Byeong-Hee;Lee, Ki-Won;Kim, Sang Hyuk;Lee, Yong Sam
    • Publications of The Korean Astronomical Society
    • /
    • v.28 no.3
    • /
    • pp.55-63
    • /
    • 2013
  • Gyupyo (圭表, Gnomon) consists of Gyu (圭, Measuring Scale) and Pyo (表, Column), and was one of the traditional astronomical instruments in East Asia. Daegyupyo (Large Gnomon) was manufactured in the Joseon dynasty around 1434 ~ 1435. To increase the measurement accuracy, it was equipped with a Hoengyang (橫梁, Cross-bar) and used a Youngbu (影符, Shadow-Definer) which was invented during the Yuan dynasty (1271 ~ 1368). The cross-bar was installed on the top of the column and this structure was called Eol. In addition, three plumbs hanging from the cross-bar was employed to vertically built Eol on the measuring scale. This method was also used to not only check the vertical of Eol but also diagnose the horizontal of the cross-bar. Throughout this study, we found that a cross-bar in a gnomon has played three important roles; measurement of the shadow length made by the central part of the Sun, increase of the measurement precision using the shadow-definer, and diagnosis of the vertical of Eol and the horizontal of the cross-bar itself using the three plumbs. Hence, it can be evaluated that the employment of a cross-bar and a shadow-definer in a gnomon was a high technology in the contemporary times. In conclusion, we think that this study is helpful for understanding the Large Gnomon of the Joseon dynasty.

Soil Modelling Method to Design Bent Foundation with Drilled Shaft Pier (단일 현장타설말뚝의 설계시 지반 모델링 방법)

  • Jeon, Kyung-Soo;Han, Kyoung-Bong;Song, Pil-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.368-376
    • /
    • 2010
  • The bent foundation with single drilled shafts is suitable and economical in South Korea, which has good rock in a shallow depth. This foundation has been designed with an elastic design concept. To apply a plastic design concept written in Korea Bridge Design Criteria, a detail design regulation, which includes the method for a plastic hinge point to occur above the ground, rebar arrangement and soil modelling, should be defined. Soil modelling should be considered in the respect of structural engineer's practicality. In this paper, single drilled shaft piers with 1m diameter are constructed, and cyclic lateral load tests loaded at 4m above the ground are taken to examine the behavior. Reduced diameter shaft above the ground and remaining the steel casing under the ground were used to induce plastic hinge to occur above the ground. Simplified soil models such as elastic relation and p-y curve are adapted, and the prediction results are compared with test results. Prediction results of a model bridge were compared according to soil models with time domain analyses, and design criteria of soil were proposed.

  • PDF

Effect of Bending Angle and Embedment Length on the Bond Characteristics of V-shaped Tie Reinforcement (절곡각 및 묻힘길이에 따른 V형 띠철근의 부착특성)

  • Kim, Won-Woo;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.5
    • /
    • pp.465-471
    • /
    • 2015
  • This study proposed V-shaped tie bar method as an alternative of internal cross-tie for reinforced concrete columns in order to enhance the constructability and confinement effectiveness of the lateral tie bars. A total of 35 pull-out specimens were prepared with the parameters of concrete compressive strength and bending angle and embedment length of the V-shaped bar to examine the bond stress-slip relationship of the V-shaped tie bar. The bond strength of the V-shaped tie bars with the bending angle not exceeding $60^{\circ}$ was higher than the predictions obtained from the equations of CEB-FIP provision. Considering the constructability and bond behavior of the V-shpaed tie bar, the bending angle and embedment length of such bar can be optimally recommended as $45^{\circ}$ and 6db, respectively, where db is the diameter of the tie bar.

Hysteresis Behavior of Partially Restrained Smart Connections for the Seismic Performance of Composite Frame (CFT 합성골조의 내진성능을 위한 스마트 반강접합의 이력거동)

  • Kim, Joo Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.99-108
    • /
    • 2015
  • The partially restrained smart CFT (concrete filled tube) column-to-beam connections with top-seat split T connections show various behavior characteristics according to the changes in the diameter and tightening force of the fastener, the geometric shape of T-stub, and material properties. This paper presents results from a systematic three-dimensional nonlinear finite element study on the structural behavior of the top-seat split T connections subjected to cyclic loadings. This connection includes super-elastic shape memory alloy (SMA) T-stub and rods to obtain the re-centering capabilities as well as great energy dissipation properties of the CFT composite frame. A wide scope of additional structural behaviors explain the influences of the top-seat split T connections parameters, such as the different thickness and gage distances of split T-stub.

Confining Stress of Internally Confined Hollow CFT Member Under Compression (압축을 받는 내부 구속 중공 CFT부재의 구속력 평가)

  • Yoon, Na Ri;Won, Deok Hee;Park, Jong Gun;Kang, Young Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.37-37
    • /
    • 2011
  • 최근 세계적인 지진의 발생과 함께 구조물의 내진성능 평가 및 증진 방법에 대하여 많은 연구가 진행 되고 있다. 특히 교량 구조물의 교각의 경우에는 상부구조의 고정하중 및 활하중을 지반에 전달하여 주는 역할을 하기 때문에, 역으로 지진이 발생하였을 경우 교각의 내진성능에 따라서 교량의 안전도에 많은 영향을 미칠 수 있다. 또한 산악지역이 국토의 70%이상을 차지하는 우리나라의 지형적인 특성상 고교각을 이용한 장대교량의 건설이 필요하며 도시지역의 교통량 증가로 인한 도시고속도로의 건설 등 고가교의 필요성이 점차 증가하고 있다. 그러나 CFT(Concrete Filled Tube)부재의 경우에는 콘크리트가 3축 구속 상태로 존재하지만 자중이 크며 내진 성능이 떨어지는 단점을 가지고 있다. 이러한 단점을 보완하기 위하여 CFT부재의 단면을 중공으로 만듦으로써 부재를 경량화하고 내부 튜브를 삽입하여 내부를 구속 시킨 내부 구속 중공 CFT 부재(Internally Confined Hollow CFT Member, ICH CFT)가 개발되었다. 이는 콘크리트가 내 외부 튜브에 의하여 구속되어 3축 구속 상태로 존재함으로써 콘크리트 중공부로의 취성파괴를 방지하여 연성도 및 강도를 향상시켜주며, 단면의 감소로 인해 재료비를 절감 할 뿐 아니라 자중 감소로 인해 내진 설계에도 유리하다. 현재 내부 구속 중공 CFT 부재에 대한 연구가 많이 진행되고 있지만, 튜브를 삽입함으로써 부재의 중공부로 발생하는 구속력의 특성을 해석적으로 정립한 연구는 미비한 실정이다. 본 연구에서는 압축을 받는 중공 CFT 부재에 내부 튜브를 삽입함으로써 발생하는 콘크리트의 구속력을 해석적 연구를 통하여 수행하였으며, 구속력을 파악하기 위한 평가 방법으로는 구속 콘크리트의 중공비와 직경, 외부튜브의 두께, 내부튜브의 두께 등으로 평가하였다. 해석적 연구 결과, 내부 튜브를 삽입함으로써 발생되는 외부 구속력은 이론적 수식에 의한 구속 응력값과 비슷한 값을 가지지만 내부로 발생하는 구속력은 이론적 수식에 의한 구속 응력값에 도달하지 못하는 것을 확인할 수 있었다.

  • PDF

Development of Connection Details for a Double Split Tee Connection Without a Shear Tab (전단탭이 없는 상·하부 스플릿 티 접합부의 접합부상세 개발)

  • Yang, Jae Guen;Kim, Yong Boem
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.1
    • /
    • pp.53-64
    • /
    • 2016
  • The double split tee connection, a type of beam-to-column moment connection, exhibits different behavioral characteristics according to changes in the thickness of the T-stub flange, the gauge distance of the high-strength bolt, and the number and diameter of high-strength bolts. In general, the double split tee connection is idealized and designed so that a T-stub fastened to the top and bottom supports a flexural moment, and a shear tab supports a shear force. However, if the double split tee connection is applied to low-and medium-rise steel structures, the size of the beam member becomes small, and thus the shear tab cannot be bolted to the web of a beam. In this regard, this study was conducted to propose connection details to ensure that the double split tee connection with a geometric shape can display sufficient shear resisting capacity. To this end, experiments were conducted using full-scale specimens for the double split tee connection.