• Title/Summary/Keyword: 기동

Search Result 2,071, Processing Time 0.03 seconds

Study on Levenberg-Marquardt for Target Motion Analysis (표적기동분석을 위한 Levenberg-Marquardt 적용에 관한 연구)

  • Cho, Sunil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.148-155
    • /
    • 2015
  • The Levenberg-Marquardt method is a well known solution about the least square problem. However, in a Target Motion Analysis(TMA) application most of researches have used the Gauss-Newton method as a batch estimator, which of inverse matrix calculation may causes instability problem. In this paper, Levenberg-Marquardt method is applied to TMA problem to prevent its divergence. In experiment, its performance is compared with Gauss-Newton in domain of range, course and speed. Monte Carlo simulation reveals the convergence time and reliability of the TMA based on Levenberg-Marquardt.

Triplet loss based domain adversarial training for robust wake-up word detection in noisy environments (잡음 환경에 강인한 기동어 검출을 위한 삼중항 손실 기반 도메인 적대적 훈련)

  • Lim, Hyungjun;Jung, Myunghun;Kim, Hoirin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.468-475
    • /
    • 2020
  • A good acoustic word embedding that can well express the characteristics of word plays an important role in wake-up word detection (WWD). However, the representation ability of acoustic word embedding may be weakened due to various types of environmental noise occurred in the place where WWD works, causing performance degradation. In this paper, we proposed triplet loss based Domain Adversarial Training (tDAT) mitigating environmental factors that can affect acoustic word embedding. Through experiments in noisy environments, we verified that the proposed method effectively improves the conventional DAT approach, and checked its scalability by combining with other method proposed for robust WWD.

정지궤도 위성의 충돌방지를 위한 회피기동

  • Lee, Byeong-Seon;Hwang, Yu-Ra;Baek, Myeong-Jin;Kim, Bang-Yeop
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.161.1-161.1
    • /
    • 2012
  • 지구 정지궤도는 위성통신, 지구관측 그리고 우주과학을 위해 매우 귀중하고 제한된 자원으로 인식된다. 이에 따라 Inter-Agency Space Debris Coordination Committee (IADC)에서는 정지궤도에서 수명이 종료되는 위성에 대해서 정지궤도에 영향을 미치지 않도록 더 높은 고도로 폐기기동을 수행하도록 권고하고 있다. 그렇지만 여러 가지 사정으로 정상적인 폐기기동을 수행하지 않은 위성들이 많이 있으며 이와 같은 위성들은 정지궤도에서 운영되고 있는 위성에 접근하여 충돌위험을 야기하고 있다. 우리나라의 정지궤도 통신해양기상위성인 천리안은 2010년 6월 26일에 발사되어 동경 128.2도에서 성공적으로 운영되고 있다. 지난 2년 동안 천리안 위성의 궤도구간에 우주물체가 접근하여 충돌위험이 발생한 사례가 3 건이 있었으며 그 중 한 건인 러시아의 라두가 1-7 위성이 접근한 2011년 2월 7일에는 천리안 위성의 회피기동을 수행하였다. 다른 두 가지 사례는 2011년 6월 19일 러시아의 COSMOS 2379의 접근과 2012년 4월 6일 러시아의 SL-12 R/B(2)의 접근이다. 본 논문에서는 정지궤도 위성을 운영하고 있을 때 다른 우주물체가 접근하여 충돌위험이 발생했을 때 어떤 과정을 거쳐서 회피기동을 수행해야 하는가에 대한 문제를 다루고자 한다. 정지궤도 위성과 우주물체와의 거리차이를 최대화할 수 있는 회피기동 시각을 찾아내고 최근접 시각에 있어서 반경방향, 진행방향, 그리고 수직방향에서의 거리차이를 분석한다.

  • PDF

A Development of on Electronic Starter for Single Phase Induction Motor (단상 유도전동기의 전자식 기동장치 개발)

  • Jeong, Hyeung-Woo;Kim, Dong-Hee;Baik, Won-Sik;Kim, Min-Huei;Song, Hyun-Jig
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.5
    • /
    • pp.73-79
    • /
    • 2008
  • This paper presents a simple electronic starter for single phase induction motor (SPIM). It replaces the centrifugal switch in the auxiliary winding circuit of the capacitor start type SPIM. The electronic starter observes the auxiliary winding voltage, and disconnects the auxiliary winding when the motor gets close to its rated speed. Because of its possibly fluttering contacts of the centrifugal switch which mounted on the conventional SPIM, the reliability of SPIM can be reduced. Developed new electronic starter has no mechanical contacts. Therefore, the reliability and the performance of SPIM can be improved. The operational principle of the proposed electronic starter is explained, and illustrated with experimental results.

A Study on Improvement of the Abnormal Operation of a One-shot Rifle with Bolt-action Operating System (볼트액션 작동방식 단발형 소총의 비정상 작동에 관한 개선 연구)

  • Shin, Jae Won;Jung, Chan Man;Choi, Si Young;Lee, Ho Jun;Shin, Tae Sung;Seo, Hyun Su
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.3
    • /
    • pp.417-424
    • /
    • 2019
  • Purpose: In this study, the goal is to analyze this case to prevent the same accidents when using one-shot rifle. Methods: Detailed analysis of damaged parts must first be made in order to determine the cause of the abnormal explosion. The cause of abnormal operation can be determined by analyzing the information of damaged components and the firing mechanism of the weapon step by step. Also we can refer to a statement of shooter, witness and accident scene situation. Based on this theory, cause of abnormal firing can be narrow down. Results: Fracture of pin for fixing firing and latch is cause of abnormal operation of firing. Conclusion: It is deemed that periodic inspection and fundamental improvement of the structure are required to prevent the same accident as this.

Analysis of the factors of the failure of the North Korean Army's Great Bypass Maneuver to Honam during the Korea War from an indirect approach strategy: Focusing on the Naval and Marine Corps' Tongyeong Amphibious Operation to Stop the "Dislocation" (간접접근전략으로 본 6·25전쟁기 북한군의 호남 방면 대우회기동 실패 요인 분석 -'교란'을 저지한 해군·해병대의 통영상륙작전을 중심으로-)

  • Choi, Ho-jae
    • Maritime Security
    • /
    • v.6 no.1
    • /
    • pp.109-135
    • /
    • 2023
  • The North Korean military's maneuver toward Honam was the fastest maneuver the North Korean army had demonstrated during the Korean War, and it was a threatening attack that forced the Korean and Allied forces to fully adjust the defenses of the Nakdong River. However, when this study analyzed the North Korean military's maneuver toward Honam in terms of indirect approach strategy, there were a number of factors that inevitably led to its failure. In terms of implementing the indirect approach strategy, the North Korean military cited a number of failure factors, including the dispersion of combat forces, the inflexibility of changing the line of operation, the maneuvering of ground forces, and the lack of psychological distaction. However, the North Koreans were preparing for a final "surprise attack," in which the 7th Division, which was following the North Korean 6th Division, took another diversion and attempted to attack in the direction of Tongyeong. With this, the North Koreans intended to break through the Nakdong River defenses and head for Pusan. However, the North Korean attack was ultimately thwarted by the Korean Navy and Marine Corps' Tongyeong Amphibious Operation. With a swift maneuver using the sea as a maneuvering space, the Navy and Marine Corps occupied key points first, creating an advantageous situation and fending off an attack by the North Korean 7th Division. The Navy and Marine Corps' Tongyeong Amphibious Operation finally thwarted the North Korean military's maneuver toward Honam, thus maintaining the Nakdong River defenses.

  • PDF

Robust Slewing Control of A Flexible Space Structure using Sliding Surface (슬라이딩 평면을 이용한 유연우주비행체의 강인 선회제어)

  • Kim, Jin Hyeong;Hong, Chang Ho;Seok, Jin Yeong;Bang, Hyo Chung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.63-71
    • /
    • 2003
  • This paper presents a robust slewing control of a flexible space structure based on sliding surface design. A sliding surface is designed for a single-axis rest-to-rest slewing in view of target angle, target angular velocity, and root monent of the flexible appendage. In comparison with the Lypunov control law, both controllers guarantee the stability and command tracking capabilities for nominal system. It is also shown that the designed control law provides further robustness to internal/external uncertainties. Extending the results of a single-axis maneuver, a sliding mode control law was sought for an arbitrary three-axis maneuver. Quaternion was used to determine the attitude of a space structure and sliding surfaces were designed for each axis, thereby a robust control law was derived considering the coupling effects between each rotational axis during the maneuver. Several numerical examples were demonstrated to show the effectiveness of the designed control law.

An Analysis of Mid-Course Correction Maneuvers according to Launch-Vehicle Dispersion in Earth-Moon Phasing-Loop Trajectory (지구-달 위상전이궤적에서 발사체 투입오차가 중간경로수정기동에 미치는 영향 분석)

  • Choi, Su-Jin;Lee, Dong-Hun;Suk, Byong-Suk;Min, Seung-Yong;Rew, Dong-Young
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.35-40
    • /
    • 2016
  • Mid-course correction maneuvers (MCCMs) are necessary to correct the launch-vehicle dispersion to go to the Moon. There were 3 or 4 MCCMs needed for a direct transfer trajectory. But the strategy for MCCMs of the phasing-loop trajectory is different, because it has a longer trans-lunar trajectory than direct transfer does. An orbiter using a phasing-loop trajectory has several rotations of the Earth, so the orbiter has several good places, such as perigee and apogee, to correct the launch-vehicle dispersion. Although launch dispersion is relatively high, the launch vehicle is not as accurate as we expected. A good MCCM strategy can overcome the high dispersion by using small-magnitude correction maneuvers. This paper describes the phasing-loops sequence and strategy to correct high launch-vehicle dispersions.

Non-linear Maneuvering Target Tracking Method Using PIP (PIP 개념을 이용한 비선형 기동 표적 추적 기법)

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.136-142
    • /
    • 2007
  • This paper proposes a new approach on nonlinear maneuvering target tracking. In this paper, proposed algorithm is the Kalman filter based on the adaptive interactive multiple model using the concept of predicted impact point and utilize modified Kalman filter regarding the error between measurement position and predicted impact point. The unknown target acceleration is regarded as an additional process noise to the target model, and each sub-model is characterized in accordance with the valiance of the overall process noise which is obtained on the basis of each acceleration interval. To compensate the decreasing performance of Kalman filter in nonlinear maneuver, we construct optional algorithm to utilize proposed method or Kalman filter selectively. To effectively estimate the acceleration during the target maneuvering, the rapid increase of the noise scale is recognized as the acceleration to be used in maneuvering target's movement equation. And a few examples are presented to show suggested algorithm's executional potential.

Experimental Verification of Effectiveness of Stabilization Control System for Mobile Surveillance Robot (기동형 경계로봇 안정화 시스템의 실험적 검증)

  • Kim, Sung-Soo;Lee, Dong-Youm;Kwon, Jeong-Joo;Park, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.359-365
    • /
    • 2011
  • A mobile surveillance robot is defined as a surveillance robot system that is mounted on a mobile platform and is used to protect public areas such as airports or harbors from invaders. The mobile surveillance robot that is mounted on a mobile platform consists of a gun module, a camera system module, an embedded control system, and AHRS (Attitude and Heading Reference System). It has two axis control systems for controlling its elevation and azimuth. In order to obtain stable images for targeting invaders, this system requires a stabilizer to compensate any disturbance due to vehicle motion. In this study, a virtual model of a mobile surveillance robot has been created and ADAMS/Matlab simulations have been performed to verify the suitability of the proposed stabilization algorithm. Further, the suitability of the stabilization algorithm has also been verified using a mock-up of the mobile surveillance robot and a 6-DOF (Degree Of Freedom) motion simulator.