• Title/Summary/Keyword: 기대최대화 알고리즘

Search Result 21, Processing Time 0.022 seconds

A Study on the Ordered Subsets Expectation Maximization Reconstruction Method Using Gibbs Priors for Emission Computed Tomography (Gibbs 선행치를 사용한 배열된부분집합 기대값최대화 방출단층영상 재구성방법에 관한 연구)

  • Im, K. C.;Choi, Y.;Kim, J. H.;Lee, S. J.;Woo, S. K.;Seo, H. K.;Lee, K. H.;Kim, S. E.;Choe, Y. S.;Park, C. C;Kim, B. T.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.5
    • /
    • pp.441-448
    • /
    • 2000
  • 방출단층영상 재구성을 위한 최대우도 기대값최대화(maximum likelihood expectation maximization, MLEM) 방법은 영상 획득과정을 통계학적으로 모델링하여 영상을 재구성한다. MLEM은 일반적으로 사용하여 여과후역투사(filtered backprojection)방법에 비해 많은 장점을 가지고 있으나 반복횟수 증가에 따른 발산과 재구성 시간이 오래 걸리는 단점을 가지고 있다. 이 논문에서는 이러한 단점을 보완하기 위해 계산시간을 현저히 단축시킨 배열된부분집합 기대값최대화(ordered subsets expectation maximization. OSEM)에 Gibbs 선행치인 membrance (MM) 또는 thin plate(TP)을 첨가한 OSEM-MAP (maximum a posteriori)을 구현함으로써 알고리즘의 안정성 및 재구성된 영상의 질을 향상시키고자 g나다. 실험에서 알고리즘의 수렴시간을 가속화하기 위해 투사 데이터를 16개의 부분집합으로 분할하여 반복연산을 수행하였으며, 알고리즘의 성능을 비교하기 위해 소프트웨어 모형(원숭이 뇌 자가방사선, 수학적심장흉부)을 사용한 영상재구성 결과를 제곱오차로 비교하였다. 또한 알고리즘의 사용 가능성을 평가하기 위해 물리모형을 사용하여 PET 기기로부터 획득한 실제 투사 데이터를 사용하였다.

  • PDF

Automatic Extraction of Training Dataset Using Expectation Maximization Algorithm - for Automatic Supervised Classification of Road Networks (기대최대화 알고리즘을 활용한 도로노면 training 자료 자동추출에 관한 연구 - 감독분류를 통한 도로 네트워크의 자동추출을 위하여)

  • Han, You-Kyung;Choi, Jae-Wan;Lee, Jae-Bin;Yu, Ki-Yun;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.289-297
    • /
    • 2009
  • In the paper, we propose the methodology to extract training dataset automatically for supervised classification of road networks. For the preprocessing, we co-register the airborne photos, LIDAR data and large-scale digital maps and then, create orthophotos and intensity images. By overlaying the large-scale digital maps onto generated images, we can extract the initial training dataset for the supervised classification of road networks. However, the initial training information is distorted because there are errors propagated from registration process and, also, there are generally various objects in the road networks such as asphalt, road marks, vegetation, cars and so on. As such, to generate the training information only for the road surface, we apply the Expectation Maximization technique and finally, extract the training dataset of the road surface. For the accuracy test, we compare the training dataset with manually extracted ones. Through the statistical tests, we can identify that the developed method is valid.

Power Consumption Patterns Analysis Using Expectation-Maximization Clustering Algorithm and Emerging Pattern Mining (기대치-최대화 군집 알고리즘과 출현 패턴 마이닝을 이용한 전력 소비 패턴 분석)

  • Jin Hyoung Park;Heon Gyu Lee;Jin-Ho Shin;Keun Ho Ryu;Hiseok Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.261-264
    • /
    • 2008
  • 전력 회사의 효율적인 운용과 전력 시장에서의 경쟁을 위하여 고객의 전력 소비 패턴 분석 및 정확한 예측이 이루어져야 한다. 이를 위해서 이 논문에서는 원격 검침 시스템에 의한 전국의 고압 고객 데이터를 대상으로 고객의 전력 소비 패턴을 정확히 예측할 수 있는 마이닝 기법을 제안하였다. 먼저, 국내 계약종별 고객 특성에 맞는 부하 패턴의 정확한 구별을 위한 9가지의 특징 벡터를 추출하였고, 기대치-최대화 군집화 알고리즘을 사용하여 고객의 34개 대표 부하프로파일을 생성하였다. 마지막으로 추출된 특징 벡터로부터 각 대표 프로파일에 대한 출현 패턴 기반의 분류 모델을 구성하여 고객의 전력 소비 패턴을 분류하였다. 국내 원격 검침 시스템에 의해 측정된 총 3,895명의 고압 고객 데이터에 대한 실험 결과 약 91%의 분류 정확성을 보였다.

D2D Based Advertisement Dissemination Using Expectation Maximization Clustering (기대최대화 기반 사용자 클러스터링을 통한 D2D 광고 확산)

  • Kim, Junseon;Lee, Howon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.992-998
    • /
    • 2017
  • For local advertising based on D2D communications, sources want advertisement messages to be diffused to unspecified users as many as possible. It is one of challenging issues to select target-areas for advertising if users are uniformly distributed. In this paper, we propose D2D based advertisement dissemination algorithm using user clustering with expectation-maximization. The user distribution of each cluster can be estimated by principal components (PCs) obtained from each cluster. That is, PCs enable the target-areas and routing paths to be properly determined according to the user distribution. Consequently, advertisement messages are able to be disseminated to many users. We evaluate performances of our proposed algorithm with respect to coverage probability and average reception number per user.

HAPS Network MBS placement with EM Clustering Algorithm (HAPS 기반 네트워크에서의 실시간 이동 기지국 위치 문제 해결 정책)

  • Woong-Hee Jung;Ha Yoon Song;Kwan Sik Cho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.1307-1310
    • /
    • 2008
  • EM(Expectation Maximization)은 불확실한 데이터들을 가지고 분포를 모델링하는, 널리 알려진 군집화 알고리즘이다. EM 알고리즘에서, 정규 분포는 기대(Expectation)-최대화(Maximization)과정을 반복하는 과정에서 그 윤곽을 다져간다. 이 때 이 과정은 EM 알고리즘의 다양한 확률 초기화에 따라 다른 결과를 내게 된다, 본 논문에서는 이 확률 초기화 값의 조정을 통하여 HAPS(High Altitude Platform Station) 기반 네트워크에서 이동 기지국의 위치를 실시간으로 결정하고자 하는 문제를 풀기 위한 조건을 몇 가지 반영시켜 확률 초기 값을 결정해 보고, 그 결과를 제시한다. 이에 더불어, ITU에서 제한하고 있는 이동 기지국의 서비스 반경을 고려하는 방법을 제시한다.

The Application of the Spectral Similarity Scale Algorithm and Expectation-Maximization for Unsupervised Change Detection using Hyperspectral Image (하이퍼스펙트럴 영상의 무감독 변화탐지를 위한 SSS 알고리즘과 기대최대화 기법의 적용)

  • Kim, Yong-Hyun;Kim, Dae-Sung;Kim, Yong-Il;Yu, Ki-Yun
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.139-144
    • /
    • 2007
  • Recording data in hundreds of narrow contiguous spectral intervals, hyperspectral images have provided the opportunity to detect small differences in material composition. But a limitation of a hyperspectral image is the signal to noise ratio (SNR) lower than that of a multispectral image. This paper presents the efficiency of Spectral Similarity Scale (SSS) in change detection of hyperspectral image and the experiment was performed with Hyperion data. SSS is an algorithm that objectively quantifies differences between reflectance spectra in both magnitude and direction dimensions. The thresholds for detecting the change area were determined through Expectation-Maximization (EM) algorithm. The experimental result shows that the SSS algorithm and EM algorithm are efficient enough to be applied to the unsupervised change detection of hyperspectral images.

  • PDF

Implementing a Fast Projector-Backprojector for EM-Based Tomogrphic Reconstruction

  • 이수진
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.6
    • /
    • pp.523-529
    • /
    • 1999
  • 방출컴퓨터단층영상술을 위한 영상재구성법에 있어서 기대값 최대화(EM)를 사용한 maximum likeihood 방법이 기존의 filtered backprojection 방법에 비해 현저한 장점을 지니고 있다는 점에서 지속적으로 그 가치가 인정되어 왔다. 그러나, 이러한 방법은 projection 및 backprojection 의 반복계산을 요하므로 영상재구성을 위한 총 계산시간이 projector 및 backprojector 의 성능에 크게 좌우된다. 본 논문에서는 EM에 근거한 영상재구성 알고리즘의 계산량을 감소시키는 방법에 관하여 논한다. 특히, projection 및 backprojection 계산을 위한 행렬의 원소중 중요한 양들을 구하는 방법과 이들을 미리 계산하여 적절한 양의 메모리에 저장하는 방법에 관하여 고찰한다. 실험에서 제안된 방법을 사용할 경우 EM 알고리즘의 계산시간을 92%까지 현저히 감소시킬 수있음을 보였다.

  • PDF

Reduction of Block Artifacts in Haze Image and Evaluation using Disparity Map (안개 영상의 블럭 결함 제거와 변위 맵을 이용한 평가)

  • Kwon, Oh-Seol
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.656-664
    • /
    • 2014
  • In the case of a haze image, transferring the information of the original image is difficult as the contrast leans toward bright regions. Thus, dehazing algorithms have become an important area of study. Normally, since it is hard to obtain a haze-free image, the output image is qualitatively analyzed to test the performance of an algorithm. However, this paper proposes a quantitative error comparison based on reproducing the haze image using a disparity map. In addition, a Hidden Random Markov Model and EM algorithm are used to remove any block artifacts. The performance of the proposed algorithm is confirmed using a variety of synthetic and natural images.

An Optimum Light Environment Design of Double-Stack Bed System by using Genetic Algorithms (유전알고리즘을 이용한 2단재배 온실의 광환경 최적화)

  • Kim, Kee-Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.93-100
    • /
    • 2011
  • 본 연구에서는 자연광 이용 온실의 재배면적을 최대화 하기 위하여 작물생강 모델링, 태양의 위치 및 일사량을 이용하여 2단재배 시스템을 위한 한계일사량 산정 모델, 2단재배 광환경 분성 모델을 개발하였다. 그리고 광환경의 변화에 따른 작물 생장 지체시간을 이용하여 작물의 생산량이 최대가 될 수 있는 한계 일사량의 값을 산정하여 2단 재배 시스템을 최적 설계 하였다. 2단재배 시스템의 최적설계를 위한 분석결과 총 생산량이 약 3.669 kg (d.m.)${\cdot}m^{-2}{\cdot}yerar^{-1}$이며, 기존 재배방식보다 130.2 %의 생산 증대 효과를 잦는 것으로 계산 되었다. 이와 같은 다단재배 시스템은 온실 내부의 공간을 효율적으로 이용하여 제배면적 대비 에너지 투입 비용을 절감 할 것으로 기대 된다.

Joint Feedback Design for Interference Channel (간섭 채널을 위한 통합 궤환 정보 설계)

  • Jeon, Ki-Jun;Byun, Ilmu;Ko, Byung-Hoon;Rhee, Duho;Lee, Seung-Ro;Kim, Kwang-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.11
    • /
    • pp.927-936
    • /
    • 2012
  • In this paper, we study joint feedback design for interference channel (IC). We develop a simple iterative algorithm for the joint feedback design to maximize the expected rate when the transmitters use partial channel-state information (CSI) obtained by the feedback link. Also, from the simulation result, we show that the performance gain is obtained compared to the conventional scheme.