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Abstractl : lterative 1econstiuction methods based on the maximum hikehhood approac using the expeclation maximization
(EM) algmithm have cnjoyed continuing interesl in emission computed tomography due to their 1emarkable advantages over
the conventional [(iltered backprojection method.  However, stnce Lhese methods require the ealculation of projection and
backprojection lor every iteration, the total computer time (o1 reconstructing an image highly depends on the performance ol
the projectot-backprojector implemented in an algorithm.  In this paper. we discuss techniques for reducing the computational
requirements ol the EM-based reconstruction algorithms.  Specilically. the paper discusses methods of generaling important
quantities ol the matrix used for fooward and badkprojection and precomputing them to {it inte a moderale amount of
compuler memory. Ouw experimental resulls show that the proposed method dramatically reduces CPL time up to 92% (o1 the
standard 1BM algorithm
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from the projection measurements  Unfortunately, since the
INTRODUCTION observed data in ECT systems e conlaminated by noise
due o low count rale «and physical [lactors such as

Emission computed tomography (ECT), such as single- attonuation, scalter, and detector response. it has heen a
photon erssion computed lomography (SPECT) or positron difficult problem to reconstruct images with good accuracy.
enngsion lomography (PET), has played a prominent role in Recently. the application of the mexamum likelihood (ML)
the area of nuclear medicine by providing  functional appronch uging the expectation maximization algorithm [1]
information aboul physiological processes in the humnan hody. has enjoved continuing interest in ECT since they can
The objective of ECT is to determing the three dimensional principle naturally evpress  accurale system models  of
(3-1) distribution of racdionuclide concentrations within the physical effects, and can accurately model the  statistical
body using 2-1) projectional views acquired al  many character of the data. The ML-EN approach has also led to
different angles aboul the patient.  Therefore, the recons the introduction of extended approaches, such as a varicty of
truction problem in ECT is to compute the distribution of a importent Bavestan adaptions of TM [2-3]. Despite the
radionuclide in a given cross section of the human hody severadl  advantages of - ML-EM - and - other  DBavesian

. . approaches including our own early work [45], EM-based

Voot REM T R YE SN eAD (A TN algorithms suller rom a slow rate of convergence die to
B T 1-000%) <2]eil o] Fo]EE
Wl L o] R A (302 730 HIHA A Ea 2E 4796 ) .
WA S H A o) Lo overcome this problem, recent papers have emphasized
3 ER

the high iteration numbers to achieve an acceptable image.

Tel, (40020 5711, Tax. (042)520-H663 the acccleration of the IEM algorithm cither by using the
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algorithms  [7 9. Kuumean [6] showed that, for PET
reconstruction, the cost of each iteration can be reduced by
using a “ring” grid instead of the traditional square grid
since the ring grid takes advantage of the rotational
symmetry of the system. In this case, however, a vague
outline of the circular sectors may appear in the
reconstructed image [6]. On the other hand, block iterative
algorithms  can  accelerate  convergence by  sequentially
processing blocks of projections and do not require additional
modification of the geometric structure. However, these
approaches still require several iterations to converge 1o a
good solution. In all cascs, the EM-hased algorithms require
repeated calculations of projection and hackprojection.

In this paper, we propose an improved method for
implementing a  fast  projector-hackprojector,  which  can
significantly accelerate EM-hased reconstruction  algorithms
including block iterative algorithms. The remainder of this
paper deseribes the overview of the EM algorithm, develops
our fast projector-backprojector along with its implemen-
tational details, and presenls simulation resulls showing a
significantly improved performance in CPU time.

THE EM ALGORITHM FOR EMISSION
TOMOGRAPHY

In ECT a radiopharmaceutical containing a radioactive
isotope is introduced into the body and forms an unknown
cmitter (source) density (or distribution). A dominant source
of degradation in ECT is photon noise due to (luctuations in
the number of photons emitled [rom the underlying object.
For a two-dimensional (2-10) distribution of underlying
source f, on a single cross-sectional plame, we define g4
45 the mumber of detected counts in the detector bin indexed
by ¢t at angle 6. Since the number of detected counts in
ECT is independently Poisson distributed, the EM algorithm
is derived from the likelihood probahility distribution, which

s given hy

2" exp(— @)
Por (o] £) = - i 1
prglf = [[ £ L), W

where g, 18 the expected number of counts and is defined

as  gu=2uH w.pfy. Here, Hy s the probability that a
i

pholon emilted [rom source Jocation (7,7 hits detector hin

t at angle &, A matrix II, whose elements are specified

by H ., i3 then the “system matrix” since il summarizes

all of the knowledge on the physical process of emission of
4 photon to its detection. The implementational details on the

=) Fakd = 1 £1207], AGE, 1999
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IT matrix are described in the following section.

One possible solution to the reconstruction prohlem is to
maximize the likelibood given in (1), The masdmum
likelihood estimate (MLE) attempts to [find the object 7 that
15 most likely to have given rise to the collected data g
Mathenmatically, the solution for the MILE can be cxpressed

as
f= HETE Priglh)

The M algorithm proposed in [1,10] is an iterative
algorithm that produces a sequence of estimates of 7 thal
converges to the MLE.  The objective function for EM is
given by

= o _Hu, Jy _ ‘
Q( f| f _%Zj o %[lw./\’/ fﬁv IOE(fzf) H if/.f]flf - (2)

Taking partial derivatives, selling them equal 1o zero, and
solving lor £, resulls in an update equation [or the EM

algorithm:
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whare f,, an f,, i () are 7, and f,j in (2,
. LTI ,

respectively. Note that g,, and ZH 0B / win (3) arc

the observed projcction mceusurcemients  and  the mean of

estimated counts, respectively. By defining

s 24 n .

g ZZH e, f,-/ , we may rewrile the update
a3

equation as

i

il _Ji, i -7
]1] = _%_][m_” %[H///,U ) ] (4)
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Notice that the second torm ( ;;{}) on the right side of (4)

"

is the “hackprojection” of g',(,/ ;'\',,, . Therefore, the EM
algorithm 1s implemented by iterations requiring  projection
and backprojection calculations. Starting with some  initicl
estimate fu >0, the EM lgorithm consists of the following

sleps:
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SET n:=0;
REPEAT until convergence of 7

() PROJECT 7 to calcuale the mean values for
cumulated counts g 4

] n,
&y '=2,Hzﬁ.£/ }.IJ ’

(i) BACKPROJECT 2,9/ 2 1o calotiate

A
= [[rH,U . on
&

(i) UPDATE pixels 7" using (4
v}y 5:=wn+1;

)

END

Nolice that, since the EM algorithm requires projection
and backprojection for cvery iteration, computer time highly
depends on the performance of the projeclor backprojector
implemented in the algorithm.

IIndson and Larkin [7] proposed an accelerated version of
the EM algorithm, the ordered subscts (0S) algorithm, that
processes the data in blocks (subsets) within each iteration.
In their work, they showed that the procedure accelerated
convergence hy a factor proportional to the number of
blocks.  Unfortunately, however, the closeness to the
likelihood in the OS-EM algorithm is known to be inversely
proportional 1o the number of blocks.  Therelore, the
05 EM algorithm with reasonable number of hlocks still
requires several ilerations to achicve the closeness to the
likelihood .

IMPLEMENTING A FAST
PROJECTOR-BACKPROJECTOR

As described in the previous section, the system matrix
conlaing weight factors for the forward projeclion based on
the system characteristics. Fach weight factor represents
the probability that a photon cmitted from a certuin source
position m F will be delected at a certain position of the
detector in g. In theory, H can be oblained by placing a
point source al cach location In 7 and by measuring the
response al each of the detectors in g In this cuse the size
of the matrix M would be extremely large. In practice,
however, H Is  implicitly computed based on  the
source- detector  geometry, and the physical processes arc
adequately modeled as lincar ellects.

As shown in Fig. 1. il a given ray is indexed hy (¢, &)

and a pixel located at (4,)) is passed hy the projection ray,

/6&%“%“)
va
/!

e

( Xmin, Vimin )

Fig. 1. Geometry for calculation of quanfiies In Siddon’s method

gome photong emitted [rom this pixel will be delected at
detector bin (¢, ) since it is viewed hy the collimator. Lot
{19y be the intersecting length of the ray indexed by
(t, &) through the pixel located at (z,;7). Then the longer
the length, the more counts 1t will be received by the
detector. Hence an approximation of each element of the
system matrix may be I 5 5= {0,

Although very simple in principle, the exact evaluation of
the intersecting lenglh has proven to be a time consuming
and difficult problem. To accelerale the calculation of the
exact intersccting length /49, Siddon [11] proposed an
ellicient way of calculating the imtersecting length Dby
considering the pixels as the interscetion arcas of orthogonal
sels of equally spaced, parallel lines as shown in Fig. 1. In
this casc, instead of calculaling the Intersections of the ray
with the individual pixels, the intersections of the ray with
the lines are calculated. 7This is apparently more cfficient
and simpler than calculating the intersections of the ray with
the individual pixels in thal, as the lines are equally spaced,
1t 13 only necessary to determine the first intersection and
generate  all the others by recursion. Using the two
intersection points of the ray with the sides, (% min s ¥ min)
and (X muc» ¥ mex ), the Siddon’s method provides (1) the
number of pixels N that the ray passes Uwough, (i) the
length of the ray contained by each pixel (In unils of the
ray length), and (i) the corresponding pixel indices (7, 7).

For SPECT reconstruction, it is necessary to calculale
the exacl intersecting length [,y ; It order o correct the

effect of attermation. Liang et ol [12] utilized the Siddon’s
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method to recursively compute attenuation factors along cach
projection ray starting at the pixel closest to the detector.
(The details on modeling other (actors in SPECT, such as
scatter and detector response, can also e [ound in [12].) Let
a given ray be indexed by ({4 0). The 2 D coordinates of
the #th pixel along that ray, a quantilty computed by the

Siddon’s methad, is then denoted  (7,5(%), 7 ,0(%)), with

n=1 denoting the pixel closest 1o the detector. For each
A(l'/‘ﬂ(”)sjf[](n)>7 jS

computed hy adding half of the allenuating length in the

pixel, an attenuation  factor,

pixel and the proviously accumulated attenuating  length

along the projection ray:

Ailnd, o) = exo] = SR (L)
—'é‘At(z'm(%),/'m(n))/m('n)]. (5)

where  p2(i,0(n),7,0(n)) and {,)(n) are the average
atteruation coefficient and the intersecting length of the nih
pixel In the ray indexed Ly (4 8), respectively. Having
computed the attenuation factor, the [orward projection g4

may he written as

g™ ”glA(l‘m(n),].m(n))[/0(7’1),

where N is the numher of pixels in the rayv indexed by
(£, ). Note that, for £(+)=10, which is the casc for no

altenuation media, the lorward projection reduces to .
N
&= ,lem(n)

Though  Siddon's methad provides an officient way 1o
calewlate the interseeting lengths along the ray, it is no longer
cfficiont if it is repeated for every iteration within the EM
algorithm.  To avold the repeated calculations of the n
tersecting lengths, we propose a more officient way of using
the Siddon’s cuantities by sloring the interseciing  lengths
[i(n) or the allemaling lengths (/) AG (0.7, ()
for atlenuation correction and the coresponding deteetor hin
{in look up lables during the lorward projection helore the
first iteration of the algorithm. Iach clement 1 the tables is
addressed by the pixel location (7, 7) and the angle 0. In
other wards, for a given ray toward (£ #). the attenuation
length and the index # are stored in (#(n), /(7). &) of the
tables.  Since multiple rays can pass through a pixel, the

maximum value for the nuniher of rays passing through s

23887 - A0, A6, 1999

pixel should be determined rom the source deleclor geo-
melry of a given syslem. In (his paper, we assume that the
maximal numher of rays passing Lthrough a pixel is two,
which is reasonable (o most conventional ECT systems. In
this case two pairs of amays dare needed to specily the two
rays. Let #,(i(3). /(n), 0) and attlen,({(n), /(n),0) be
the 3 D arrays far storing the index ¢ and the atlenualion
length obtained [rom the first ray passing through a pixel
located at (i(n), /(n)), respectively, where n is the pixel
index obtained [rorm the Siddon’s method. Similarly, another
peir of the amravs, £H(d(n), (n),8) and attlens(i(n),
), 8 are for the sccond ray passing through the pixcl.
lfor K angles and L detector bins, Lthe procedure o store
the Siddon’s quantties s then sunruanzed as [ollows:
set #( ) -0 )=
sot attlen,( - Y =0; alllen,( - ): =0;
for @ -=1,2 - K
for + =1,2 - L
calculale (X yu s ¥ o) A0 (X a5 ¥ g )
compute Siddon’s guantities,
N=n, ({n),n), and [ xn)
lor m=1, 2.+, N
compute aflenuation length, aftlen;
store the Index ¢ and the attenuation
length  atilen usIng
(K m), n),6) =0)

LG, (), D) =1
attlen, (1 n), {n), 0): =alllen;

else
t:(i(m), [(n), O —1;
attlen (1 n), j(n), 8): =alllen;
end If
end
end
end

[laving stored the quantities oblamed from the Siddon's
method, projection [or cach angle can now be calculated by
simply  accumulating the altenuating lengths [or euch pixel
obtained from the tahles as shown below:
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set gi=07for V tand &
for i=1, 2,--, M
for j=1, 2,--, M
for =1, 2,--, K
t:=1(i,7,6);
g9t =8 T f 5x attleny (1, 7, 6);
t=t,(i,7, 0);
Q107 =& 0+ FyX attleny(i, 7, 0
end

end
end

Singe the above method does not involve the core steps
of Siddon’s method to calculate the intersecting lengths by
tracing each projection ray, it significantly reduces computer
time.
lct us now consider the backprojection step in (4). The
conventional  backprojection method is to smear the
measurements back into the object domain. In this case it is
necessary to calcwale Siddon's quantities used in forward
projection in order to distribute each measurement Lo pixels
along the projection ray. However, it is again inefficient if
the caleulation of the Siddon's quantities for backprojection
is repeated [or every ileration.

One of the excellent features of using the quantities
stored in the tables is that backprojection can be performed
by pixcl-hy-pixel operations rather than conventlional
ray-by-ray operations, while retaining the advanlages of

using exact inlersecting lengths. Let by= > Hypy E’HW ],

=

£
where é .o 18 calculated by projecting the reconstruction

7, obtained from the previous ileration. The procedure for

backprojection is then described as follows:

set b,:=0for V 7and j
for i=1, 2,, M
for j=1, 2,-. M
for =1, 2,-, K
tr=t,(i,7. 0);

by =by+ attlen (i, j, ) x —5L8—;
&
t:=t,(4,7, 6)
b i :bij‘f' al‘ﬂe?’lz(i,]', 6) X _EAI@_”,
g0
end
end

end

Note that, for E’H,z =1 in (4), the backprojection &,

=

&0
reduces to b ,= %H +0 4 which is the denominator of the

first term in the right side of (4). This term is identified as
the normalization which contains the relative total system
sensitivity at each pixel (see Fig. 2 (d)). By inserting this
term in the loop for @& in the above procedure, the entire
EM algorithm can be readily implemented with a high
efficiency for repeated calculations of projections and
backprojections.

SIMULATIONS AND RESULTS

To test the performance of our projector-backprojector,
we implemented the two EM-based reconstruction algorithms
ithe standard EM proposed by Shepp and Vardi [1] and the
OS-EM proposed by Hudson and Larkin [7]. For the
0S-EM  algorithm, we used two different numbers of
subsets (8 and 16) to group the projection data. In fact, the
standard EM algorithm is a special case of OS-EM whose
number of subsets for all projection data is one. Therefore,
the algorithms used in our simulations may be regarded as
the OS-EM algorithms with a single subset, 8 subsets, and
16 subsets. To compare the CPU time for the EM-based
algorithms implemented by using our fast projector-
backprojector with those implemented by a conventional way,
we also implemented a standard projector-backprojector that
computes the intersecting lengths of each ray repeatedly
using the Siddon's method at each iteration. Although our
method can easily he extended to other EM-based algori~
thms, such as Bayesian MAP algorithms, only the results
from the two algorithms are reported here because of the
similarity of the results from MAP algorithms in terms of

Table 1. Comparison of CPU times for reconstructing a 128
128 image

0O5-EM 05EM

EM (8 blocks) (16 blocks)
ig?;;f 64 8 1
iifljd:r;o;ethod 0268 2582 12.94
(CPU yiteration) 020 82 (324)
gigojeéo;ethod 3383 13 982
(CPU s/iteration) 047 (0.92) (147)
Reduction of 016 o ”1

total CPU s (%)
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Fig. 2. The 128128 phantom Inage used In the aimulations
and other reconstruction related 1mages. (@) Chesl phaniom
actvity. (b} Attenuation map. (¢} Sinogram with Poisson noise.
(d) Surface plot for the sensitivity map obtained lorm (b)

computer time. The algorithms were progranmmed in GNU C
(version 27) on the Tinux operating system and run on a
Pentium II processor running at 400 Mz,

The simulations were performed on a 2-D (128 x128)
clliptical chest phantom shown i Fig. 2(a). For projection
data from the 128x128 phuntom, we uvsed 128 projection
angles over 360" with 192 detector hins at cach projection.
Our reconstruction geomelry was thus a 128 ~ 128 sguare
Image matrix with a detector array length slightly longer
than the diagonal of the scquare. Figures 2 (a), (h). (c). and
(d) show the chest phantom activity, the attenuation map,
the simulated projection data (sinogram), and the sensitivily
map obtamed [rom the attenuation mpn, respectively, The
chest phantom activity i mvocarchum, fissue, and lung wag
specified to be in the ratio &1:0. We assumed linear
allenuation coefficients of 0 for air, 0048 em 1 for lung,
0096 em 1 for Ussue, and 0.152 em 1 for bone. Projeclion
dala were generated by Incorporating  attenuation and
Poisson noise. In this case, the tolal number of detector
counts in all projections wag approxinitely 250,000,

For iteration numhbers, we chose 64 for the standard EM,
& for the OS-EM with 8 hlocks, 4 for the OS-EM with 16
blocks.  The number of iterations for {he standard EM was
chosen qualilatively based on the starting poinl for deterio-
ration of the smoothness. The choices [or (he ileralion nu
mbers in OS-EM were made hasced on the fact that the

0S-EM algorithm  accelerates ity convergence by a [factor

o) %88 Aud, #GE, 1999

Fig. 3. Reconslrucled mages by ML-EM and OS-EM.
ML-EM(64 iterations). (b} OS-EM with 16 blocks(4 terations)

(a)

proportional to the nwnber of blocks [71. Figures 3 (a) and
(b) show the reconstructions hy LEM and OS-EM with 16
blocks, respectively.

Table 1 compares CIPU seconds required to compute the
update equation m (4) for 128x128 pixels. For standard EM,
when our projeclor backprojector was used, the CPU time
for 64 iterations was cdramatically reduced from 402.68s to
33.83s.Note thal our projector-hackprojector requires  only
one-time calculation of the Siddon’s quantities to be stored
before the first iteration.  The measwred CPU lime to calcu-
late the Siddon's quantilies and store them in compute~
memory was 35905 and ib was included in all CPU times for
the proposed method in Table 1 except CPU s/iteration in
(parentheses) [or the proposed method. For OS-EM, while
the improvement is nol so stunning as the case for the
standard EN, the CPU times for 8 (<8 blocks) iterations
and 4 (<16 blocks) iterations were slill significantly reduced
from 25825 0 11.13s and from 12945 to 982s, respectively.
Recall that the closencss of the solution obtained by OS EM
to the likelihood 1s mversely proportional to the number of
blocks used in the algorithm.  Therefore, our projector
hackprojector implemented in an OS-EM algorithm  allows
less blocks to achieve a certaim quality of solulion In a given
computer time. For oxanple, as shown in Table 1, the
O5-EM with & Dblocks implemented with owr  projector-
hackprojector 15 even fuster than the O5-EM with 16 blocls
implemented with the slandard projector-backprojector (11.13
5 ve, 12.91s).

The amount ol memory requited 1o store the Siddon’s
quaniilies In our projeclion geomelry was  approximately

20MB, where we used a single bvle for both #( - ) and
£( ) and 1 byle Moating point for both  aitlen,( + ) and
attlens( ).
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CONCLUSION

We have considered an improved methed for implementing
a fast projector backprojector, which is useful for iterative
reconstruction algorithms that require repeated calculations of
projection and backprojection, such as the ML EM and the
EM -hascd Bavesian algorithms,  An overall conclusion is
that, by storing the interscctions of the ray with the
individual pixels In  computer memory hefore the firsl
Iteration, the actual iterations can significantly be accelcrated
hy simply using the quantities stored in the memory. Our
experimental results show that our proposed method can
reduce CPU time up o 9% for the standard EM algorithm.
The OS EM algorithm, which requires much less ilerations
than the standard EM. can also be accelerated Further Ly
using our proposcd method.

Since EM based reconstruction methods are  inevitably
necessary for clinical applications due 1o their remarkable
advanlages over the classical filtered hackprojection method,
our proposed method with paralidd processing will make such
reconstruction methods more practical.
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