• Title/Summary/Keyword: 기구학적 제어

Search Result 96, Processing Time 0.025 seconds

Technical Trend of Mobile Robot According to Kinematic Classification (이동형 로봇의 기구학적 분류에 따른 기술동향)

  • Jeong, Chan Se;Park, Kyoung Taik;Yang, Soon Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.1043-1047
    • /
    • 2013
  • Smart mobile robot is a kind of Intelligent Robot. It means that operates manipulate autonomously and recognize the external environment. Smart mobile robot moving mechanism has many type and the type depend on the robot shape or purpose. Recently, research on the moving mechanism has been actively in many area. The moving mechanism divided to wheel type, crawler type, walking type, other type and the moving type choose by the kind of robot or the purpose robot. In this paper, describe the kind of moving mechanism on the smart mobile robot and the technical trend of moving mechanism of smart mobile robot.

Development of a Kinematic Winding Control Algorithm for the Alternate Pirn (Alternate Pirn의 권취형상 제어를 위한 기구학적 제어 알고리즘 개발)

  • 최영휴;김광영;김종수;박대원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.413-418
    • /
    • 1996
  • Alternate pirn winding is more difficult to control than others because starting points of its traverse strokes are changed alternately through the winding operations. However, the alternate pirn winding is ye useful method because the yarn can be hardly broken when it is unwinded from full packaged bobbin. This paper presents kinematic control algorithm for the alternate pirn. The proposed algorithm can decide the values of control variables such as bobbin speed and traverse speed from the given input parameters and constraints by using the kinematic relations of the winding mechanism. The compute simulations and experimental verifications of the developed winding control algorithm are carried out It is concluded that the proposed algorithm is an efficient and reliable alternative to traditional trial and error control methods.

  • PDF

Study on Kinematic Calibration Method of Stewart Platforms (스튜어트 플랫폼의 기구학적 교정기법에 관한 연구)

  • Goo, Sang-Hwa;Son, Kwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.168-172
    • /
    • 2001
  • The accuracy problem of robot manipulators has long been one of the principal concerns in robot design and control. A practical and economical way of enhancing the manipulator accuracy, without affecting its hardware, is kinematic calibration. In this paper an effective and practical method is presented for kinematic calibration of Stewart platforms. In our method differential errors in kinematical parameters are linearly related to differential errors in the platform pose, expressed through the forward kinematics. The algorithm is tested using simulated measurement in which measurement noise is included.

  • PDF

A Steering Control of the Unmanned Container Transporter (무인 컨테이너 트랜스포터의 조향 제어)

  • Ha, H.K.;Lee, Y.J.;Yoon, Y.J.;Huh, N.;Lee, M.H.
    • Journal of Korean Port Research
    • /
    • v.13 no.2
    • /
    • pp.381-388
    • /
    • 1999
  • To improve the productivity in the harbor, successful development of an UCT(Unmanned Container Transporter) is needed. Well-designed steering and velocity control systems are the key factor for the development of the UCT. In this paper, a research concerning the achievement of the steering control is introduced. To get an information on the guide line that the UCT should track, the vision system is applied. By using neural network, proper steering angle is gotten fast with less influence of the image disturbance. A simulation based on the UCT kinematics is performed with the measured steering angle, and it shows satisfactory results.

  • PDF

로켓 엔진용 짐벌 마운트 개념 설계

  • Kim, Ok-Gu;Jeong, Yong-Hyeon;Park, Jong-Yeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.150.2-150.2
    • /
    • 2012
  • 로켓 엔진용 짐벌 마운트는 발사체 발사 후 자세 제어를 위해 발사체와 엔진사이에 장착된 TVC(Thrust Vector Control) 구동기의 작동으로 짐벌 운동을 수행하며 기구학적으로 자세 제어를 하는데 있어 매우 중요한 역할을 하는 요소이다. 이러한 짐벌 마운트는 엔진 추력을 발사체에 전달하는 기능 이외에 지정된 위치에 엔진을 고정시키는 역할과 위치 고정 후 발사체 단과 엔진의 정확한 추력 전달을 위한 기계적 불일치 보정 기능, 짐벌 구동에 대한 피봇 기능을 동시에 수행하여야 하는 복합적인 기능을 가지고 있다. 특히, 이중에서도 물리적으로 고 추력의 하중을 전달하는 요소로서 충분한 강도와 강성을 지녀야 하므로 본 연구에서는 이와 관련된 초기 설계 요구도 분석을 바탕으로 설계 규격에 부합하는 짐벌 마운트의 구조적 검토를 통해 로켓 엔진용 짐벌 마운트 설계 형상을 개념적으로 제시하였다.

  • PDF

Kinematics and Robust PID Trajectory Tracking Control of Parallel Motion Simulator (병렬형 모션 시뮬레이터의 기구학적 해석과 강인 궤적추종 PID 제어기의 설계)

  • Hong, Seong-Il
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.161-172
    • /
    • 2007
  • This article suggests an inverse kinematics analysis of a two degree of freedom spatial parallel motion simulator and design methodology of the robust PID controller. The parallel motion simulator consists of a fixed base and a moving frame connected by two serial chains, with each serial chain containing one revolute joint and two passive spherical joint. First, an inverse kinematics problems are solved in order to find the joint variable necessary to bring the end effector to track the desired trajectory. Second, an inverse optimal PID controller is proposed to track trajectories in the face of uncertainty. And the $H_{\infty}$ optimality and robust stability of the closed-loop system is acquired through the PID controller. Finally numerical results show the effectiveness of the PID controller that is designed by square/linear tuning laws.

The effects of the Control of Combustion Instabilities in accordance with various Acoustic Cavities (음향공 형상에 따른 연소 불안정 제어 효과)

  • Cha Jung-Phil;Yang Jea-Jun;Seo Ju-Hyoung;Kim Hong-Jip;Ko Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.73-76
    • /
    • 2006
  • Acoustic cavity as a stabilization device to control high-frequency combustion instabilities in liquid rocket engine is adopted and its damping capacity is verified in atmospheric temperature. Geometric effects of acoustic cavity on damping characteristics are analyzed and compared quantitatively. Satisfactory agreements have been achieved with linear acoustic analysis and experimental approach. Results show that the acoustic cavity of the largest orifice area or the shortest orifice length was the most effective in acoustic damping of the harmful resonant frequency finally, it is proved that an optimal design process is indispensable for the effective control of combustion instabilities.

  • PDF

A Study on Design and Manufacture of Spatial Cams (입체 캠의 형상 설계와 가공에 관한 연구)

  • 김찬봉;양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1361-1371
    • /
    • 1993
  • The effort of this paper is to develop a methodology of computer aided design and manufacture of spatial cams. The integrated CAD/CAM systems for spatial cams are developed to enable manufacturer to design and machine them readily. The contour of spatial cams can be obtained by applying envelope theory to the cam/follower motion. The mathematical cam contour is evaluated at some increment to generate the numerical data for the CNC programming. Incremental generation of points along a cam contour can be accomplished in consideration with the specified tolerance. The computerized procedure is described in detail with accompanying examples.

Basic Study on the Auto Closing System Development of Door at Smoke Control Zone (제연구역 출입문의 자동폐쇄장치 개발에 관한 기초 연구)

  • Lee, Dong-Myung;Yu, Byung-Ku
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.04a
    • /
    • pp.333-339
    • /
    • 2010
  • 본 연구는 제연구역 출입문의 자동폐쇄장치를 개발하기 위한 기초 연구로서, 자동폐쇄장치의 프로세스와 자동폐쇄조절장치의 기구학적 메커니즘 정립 및 기구 모델링을 바탕으로 자동폐쇄장치의 해석이론을 정립하였고, 해석이론을 바탕으로 한 운동해석 시뮬레이션을 통해 폐쇄력 장치를 선정하고 자동폐쇄조절장치의 각 요소를 개발할 수 있는 엔지니어링 데이터 구축과 원천기술을 확립하였다. 자동폐쇄장치의 개발에 유연성과 탄력성을 줄 수 있고, 자동폐쇄장치의 개발로 인해 연기의 제어수단과 기술적 대책마련과 제연시스템의 높은 신뢰성과 안정성을 확보할 수 있을 것으로 본다.

  • PDF

Type-2 Fuzzy Self-Tuning PID Controller Design and Steering Angle Control for Mobile Robot Turning (이동로봇 선회를 위한 Type-2 Fuzzy Self-Tuning PID 제어기 설계 및 조향각 제어)

  • Park, Sang-Hyuk;Choi, Won-Hyuck;Jie, Min-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.226-231
    • /
    • 2016
  • Researching and developing mobile robot are quite important. Autonomous driving of mobile robot is important in various working environment. For its autonomous driving, mobile robot detects obstacles and avoids them. Purpose of this thesis is to analyze kinematics model of the mobile robot and show the efficiency of type-2 fuzzy self-tuning PID controller used for controling steering angle. Type-2 fuzzy is more flexible in verbal expression than type-1 fuzzy because it has multiple values unlike previous one. To compare these two controllers, this paper conduct a simulation by using MATLAB Simulink. The result shows the capability of type-2 fuzzy self-tuning PID is effective.