• Title/Summary/Keyword: 기공특성

Search Result 1,403, Processing Time 0.022 seconds

Microstructure and Strength Characteristic of Hydropobic Cement Mortar with Silan Admixture (실란계 혼화제가 혼입된 소수성 시멘트 모르타르의 미세구조 및 강도특성)

  • Kim, Younghwan;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.127-134
    • /
    • 2021
  • A hydrophobic emulsion consisting of PMHS and PVA was mixed into a cement mortar to observe changes in cement hydrate and microstructure, and to experimentally evaluate compressive strength and flexural strength. The hydrophobic emulsion was added with metakaolin and PVA fibers, and the stirring speed and sequence were adjusted to prepare a shell-concept hydrophobic emulsion. It was then mixed when mixing mortar to enhance filling of the internal pores and change of the hydrates. It was observed that the mortar mixed with a hydrophobic emulsion was filled with micropores and a coating film was formed on the surface of the hydrates by the emulsion. It was analyzed that the total pore area and porosity of the mortar mixed with the emulsion decreased from 30% to 60% compared to OPC, excluding the 50MK variable, which was extremely reduced and the median pore diameter decreased in some variables. It was also found that the compressive strength of the mortar mixed with emulsion 1% was increased up to 20%, but the strength of the mortar specimen mixed with 2% decreased to 50%.

Preparation and Fundamental Characterization of EVOH Hollow Fiber Membranes via Thermally Induced Phase Separation (TIPS) (열유도상분리법을 이용한 EVOH 중공사 분리막의 제조 및 기본 특성)

  • Hou, Jian;Yun, Jaehan;Jeon, Sungil;Chung, Kun Yong;Byun, Hongsik
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.395-405
    • /
    • 2018
  • Poly(ethylene-co-vinylalcohol) EVOH hollow fiber membranes were successfully fabricated via a thermally induced phase separation (TIPS) method. It was observed that all membranes fabricated under different spinning conditions had interconnected and bicontinuous structures through liquid-liquid phase separation. Glycerol and poly(ethylene glycol) 200 were used as diluents for the TIPS method. Glycerol was used as a mixing component in quenching bath to control pores on the outer surface of the hollow fiber membrane. Hot quenching bath with a mixing component to generate large pores on the outer surface of the hollow fiber membrane. The effects of polymer concentration, diluent and quenching bath on the morphologies, water permeabilities, and mechanical properties of the EVOH hollow fiber membranes were systematically investigated. The relationship between water permeability, mechanical properties and spinning conditions was discussed in detail.

Electrochemical Behaviors of Carbon Aerogel Electrodes for Electric Double Layer Capacitors (전기이중층 커패시터용 탄소 에어로겔 전극의 전기화학적 거동 연구)

  • Yang, Jae-Yeon;Seo, Min-Kang;Kim, Byoung-Suhk
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.336-340
    • /
    • 2020
  • In this study, carbon aerogels (CA) were prepared by sol-gel polycondensation of resorcinol and furfural in isopropanol using hexamethylenetetramine as a catalyst, and then directly drying the organic gels under isopropanol freeze-drying conditions, followed by carbonization under a nitrogen atmosphere. The preparation conditions of the CA were explored by changing the mole ratio of resorcinol to furfural. The effect of the preparation conditions on the pore structure of the CA was studied by nitrogen adsorption isotherms. The characteristics of the CA were studied by scanning and transition electron microscopy, and infrared spectrometry. The accessibility of pores and performance of the CA as an electrode in electric double layer capacitors were also electrochemically investigated. As a result, BET surface area and specific capacitance increased with the molar ratio of resorcinol to catalyst (R/C) ratio; the maximum values of 765 ㎡/g and 132 F/g were achieved at the R/C ratio of 200, respectively. Consequently, it was confirmed that increasing the R/C ratio increased the average pore size of the CA electrode, which improved the rate capability of the system.

The Thermal Conductivity Characteristics of Carbon Block with Nano-Diamond (나노다이아몬드가 첨가된 탄소블록의 열전도도 특성)

  • Jun Soong Lee;Ji Hun Mun;Sungwook Joo;Seung Uk Lee;Min Il Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.608-612
    • /
    • 2023
  • Nano-diamond (ND) was added during the carbon block preparation process to increase the thermal conductivity of the carbon block. Added ND controlled the generated pore of carbon block due to the volatilization of the binder pitch during the carbonization process. The ND was added to the kneading process of coke and binder pitch, and carbon blocks were prepared by pressing and carbonization. As the amount of added ND increased, the ND ratio of the carbon block increased. The added ND made a pass-way for generated gas by volatilizing the binder pitch during the carbonization process, increasing the density of the carbon block and reducing the porosity. The thermal conductivity of the carbon block was improved by increased density, lowered porosity, and the high thermal conductivity of added ND.

Electrochemical Characterization of Porous Graphene Film for Supercapacitor Electrode (다공성 그래핀 필름의 슈퍼캐패시터 전극용 전기화학적 특성)

  • Choi, Bong Gill;Huh, Yun Suk;Hong, Won Hi
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.754-757
    • /
    • 2012
  • In this report, we fabricate the porous graphene films through embossing process and vacuum filtration method and demonstrate their superior electrochemical properties as supercapacitor electrode materials. Insertion/removal of polystyrene nanoparticles between the graphene sheets allows to provide pore structures, leading to the effective prevention of restacking in graphene films. As-prepared porous graphene films have a large surface area, a bicontinuous porous structures, high electrical conductivity, and excellent mechanical integrity. The electrochemical properties of the porous graphene films as electrode materials of supercapacitor are investigated by using aqueous $H_2SO_4$ and ionic liquid solution under three-electrode system. The porous graphene films exhibit a high specific capacitance (284.5 F/g), which is two-fold higher than that of packing graphene films (138.9 F/g). In addition, the rate capability (98.7% retention) and long-term cycling stability (97.2%) for the porous graphene films are significantly enhanced, due to the facilitated ion mobility between the graphene layers.

A Study for Physical Properties of ALC using different Quartzite (규석 종류에 따른 ALC 물성 연구)

  • Chu, Yong-Sik;Seo, Sung-Kwan;Im, Du-Hyuk;Song, Hun;Lee, Jong-Kyu;Lee, Seung-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.89-94
    • /
    • 2012
  • ALC was fabricated using cement, lime and quartzite by hydrothermal reaction. The kind of quartzite was reviewed for ALC properties and returned slurry was recycled in this study. Munkyung and Kumpyung quartzite was used and quartzite powder was experimented. The major mineral phase of Munkyung quartzite was quartz and muscovite crystal but that of Kumpyung was quartz. It was certain that crystallinity of Kumpyung quartzite was superior to Munkyung quartzite. Compressive strength and A-number of ALC with Kumpyung quartzite was higher than that of ALC with Munkyung quartzite under similar specific gravity. These results was resulted from major mineral phase, crystallinity and minor components of quartzite.

  • PDF

Characterization of metal-containing activated carbon derived from phenolic resin (페놀 수지로부터 유도된 금속이 함유된 활성탄의 특성화)

  • Oh, Won-Chun;Jang, Won-Cheoul;Kim, Bum-Soo
    • Analytical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.349-355
    • /
    • 2001
  • A series of micro- and mesoporous activated carbons were prepared from phenolic resin using a metal treated chemical activation methodology. $N_2$-adsorption data were used to characterize the surface properties of the produced activated carbons. Results of the surface properties and pore distribution analysis showed that phenolic resin can be successfully converted to micro- and mesoporous activated carbons with specific surface areas higher than $962.3m^2/g$. Activated carbons with porous structure were produced by controlling the amount of metal chlorides($CdCl_2$, $CuCl_2$). Pore evolvement was shown to be most effected by the incremental addition of metal chloride. From the thermodynamic DSC data, enthalpy formations(${\Delta}H$) of first endothermic reaction were increase with the incremental addition of metal chloride.

  • PDF

Structural characteristics of Zachery treated turquoise (Zachery 처리 터키석의 표면 특성 평가)

  • Kwon, Ki-Ran;Bang, Sin-Young;Park, Jong-Wan;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.2
    • /
    • pp.95-101
    • /
    • 2009
  • The surface characteristics of Zachery-treated turquoise stones have been studied in detail with a comparison of natural and plastic-impregnated turquoise. The SEM-EDS analysis exhibited that Zachery-treated turquoise was characterized by the uniform distribution of potassium element through the specimen and did not show the sharp crystalline $SiO_2$ facet and boundary phase which are common in natural ore. The potassium element shown in the Zachery-treated turquoise seemed to be occurred during the treatment process for the improvement of durability. The bar-shaped crystals observed in the pore was found to be a feature of Zachery treated turquoise and are expected to influence on their stability and durability, while the pore sizes in turquoise stones depends on the parameter of the treatment procedure.

A Study on the Effect of Coal Properties on the Electrochemical Reactions in the Direct Carbon Fuel Cell System (석탄 물성에 따른 직접탄소 연료전지의 전기화학 반응 특성 연구)

  • Ahn, Seong-Yool;Eom, Seong-Yong;Rhie, Young-Hoon;Moon, Cheor-Eon;Sung, Yon-Mo;Choi, Gyung-Min;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.1033-1041
    • /
    • 2012
  • Performance evaluation of a direct carbon fuel cell (DCFC) was conducted according to coals and a graphite particle. Several fuel properties such as thermal reactivity, textural structure, gas adsorption characteristic, and functional groups on the surface of fuels were investigated and their effects on electrochemistry were discussed. The strong carbon structure inside of fuels led the rapid potential decreasing in high current density region, because it caused small surface area and low pore volume. The functional groups on the surface were related to the low current density region. The maximum current density and power density of fuels were affected by the total carbon content in fuels. The effect of operating conditions such as stirring rate and operating temperature was investigated in this study.

Effect of the Structure of the Smallest Poresize Layer on the Permeability of PES Microfiltration Membranes (최소 기공층 구조가 PES계 정밀여과막 투과 성능에 미치는 영향)

  • Kim, No-Won
    • Membrane Journal
    • /
    • v.19 no.1
    • /
    • pp.25-33
    • /
    • 2009
  • PES (polyethersulfone) membranes with highly enhanced their asymmetry were prepared by phase inversion process. The membranes were prepared by using PES/DMF (N,N-dimethylformamide)/TSA (p-toluenesulfonic acid)/PVP (polyvinylpyrrolidone) casting solution and water coagulant. The pre-coagulation of membrane surface which was induced by an addition of TSA as a demixing agent and PVP as a swelling polymer in the PES solution and humid exposure time, played a crucial role in determining morphological properties and the PWP (pure water permeation) performance. The PES solution was coated on polyester film under condition of 80% humidity for a while ($72{\sim}144$ sec) before immersing in a coagulation bath. The characterization of membranes was carried out by a capillary flow porometer, a FE-SEM and a permeation test apparatus. As the thickness of the smallest pore size layer (SPL) decreased, the asymmetry of membrane increased under conditions of 20 wt% of TSA and 10 wt% of PVP in 11 wt% of PES solution during longer humid contact time. As a result, the membranes showed a remarkable increase of PWP.