DOI QR코드

DOI QR Code

Electrochemical Characterization of Porous Graphene Film for Supercapacitor Electrode

다공성 그래핀 필름의 슈퍼캐패시터 전극용 전기화학적 특성

  • Choi, Bong Gill (Dapartment of Chemical & Biomolecular Engineering (BK21 program), KAIST) ;
  • Huh, Yun Suk (Division of Material Science, Korea Basic Science Institute) ;
  • Hong, Won Hi (Dapartment of Chemical & Biomolecular Engineering (BK21 program), KAIST)
  • 최봉길 (한국과학기술원 생명화학공학과) ;
  • 허윤석 (한국기초과학지원연구원 물성과학연구부) ;
  • 홍원희 (한국과학기술원 생명화학공학과)
  • Received : 2012.01.29
  • Accepted : 2012.05.24
  • Published : 2012.08.01

Abstract

In this report, we fabricate the porous graphene films through embossing process and vacuum filtration method and demonstrate their superior electrochemical properties as supercapacitor electrode materials. Insertion/removal of polystyrene nanoparticles between the graphene sheets allows to provide pore structures, leading to the effective prevention of restacking in graphene films. As-prepared porous graphene films have a large surface area, a bicontinuous porous structures, high electrical conductivity, and excellent mechanical integrity. The electrochemical properties of the porous graphene films as electrode materials of supercapacitor are investigated by using aqueous $H_2SO_4$ and ionic liquid solution under three-electrode system. The porous graphene films exhibit a high specific capacitance (284.5 F/g), which is two-fold higher than that of packing graphene films (138.9 F/g). In addition, the rate capability (98.7% retention) and long-term cycling stability (97.2%) for the porous graphene films are significantly enhanced, due to the facilitated ion mobility between the graphene layers.

본 연구에서는 embossing 공정과 진공여과법에 의해서 제조된 다공성 그래핀 필름을 슈퍼캐패시터의 전극활물질로 사용하여 우수한 전기화학적 특성을 증명하였다. 그래핀 시트사이에서 Polystyrene 입자들의 삽입/제거 공정을 이용하여 기공 구조들을 제공함으로써 그래핀의 재적층(restacking)을 효과적으로 제어할 수 있었다. 상기 제조된 다공성 그래핀 필름은 넓은 표면적, 상호 연결된 기공 구조, 높은 전기전도도 및 우수한 기계적 물성을 나타내었다. 본 다공성 그래핀 필름을 슈퍼캐패시터의 전극물질로 사용하여 황산 수용액과 이온성 액체 전해질 기반의 3상 전극 시스템에서 전기화학적 특성을 살펴보았다. 다공성 그래핀 필름은 높은 비축전용량(284.5 F/g)을 나타내었으며, 이는 적층 그래핀 필름(138.9 F/g) 보다 두 배 정도 높았다. 또한, 그래핀 필름내의 이온 이동속도 향상 효과로 다공성 그래핀 필름의 충방전 속도(98.7% retention)와 충방전 수명(97.2% retention)이 크게 향상되었다.

Keywords

Acknowledgement

Supported by : 한국기초과학지원연구원

References

  1. Armaroli, N. and Balzani, V., "Towards an Electricity-Powered World," Energy Environ. Sci., 4, 3193-3222(2011). https://doi.org/10.1039/c1ee01249e
  2. Miller, J. R. and Burke, A. F., "Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications," Electrochem. Soc. Interface, 17, 53-57(2008).
  3. Hall, P. J., Mirzaeian, M. Fletcher, S. I., Sillars, F. B., Rennie, A. J. R., Shitta-Bey, G. O., Wilson, G., Cruden, A. and Carter. R., "Energy Storage in Electrochemical Capacitors: Designing Functional Materials to Improve Performance," Energy Environ. Sci., 3, 1238-1251(2010). https://doi.org/10.1039/c0ee00004c
  4. Simon, P. and Gogotsi, Y., "Materials for Electrochemical Capacitors," Nat. Mater., 7, 845-854(2008). https://doi.org/10.1038/nmat2297
  5. Sun, Y., Wu, Q. and Shi, G., "Graphene Based New Energy Materials," Energy Environ. Sci., 4, 1113-1132(2011). https://doi.org/10.1039/c0ee00683a
  6. Stoller, M. D., Park, S., Zhu, Y., An, J. and Ruoff, R. S., "Graphene- Based Ultracapacitors," Nano Lett., 8, 3498-3502(2008). https://doi.org/10.1021/nl802558y
  7. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R. and Ruoff, R. S., "Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Adv. Mater., 22, 3906-3924(2010). https://doi.org/10.1002/adma.201001068
  8. Miller, J. R., Outlaw, R. A. and Holloway, B. C., "Graphene Double- Layer Capacitor with ac Line-Filtering Performance," Science, 329, 1637-1639(2010). https://doi.org/10.1126/science.1194372
  9. Hummers, W. S. and Offeman, R. E., "Preparation of Graphitic Oxide," J. Am. Chem. Soc., 80, 1339(1958). https://doi.org/10.1021/ja01539a017
  10. Zhang, L. L. and Zhao, X. S., "Carbon-Based Materials as Supercapacitor Electrodes," Chem. Soc. Rev., 38, 2520-2531(2009). https://doi.org/10.1039/b813846j
  11. Hong, J., Char, K. and Kim, B.-S., "Hollow Capsules of Reduced Graphene Oxide Nanosheets Assembled on a Sacrificial Colloidal Particle," J. Phys. Chem. Lett., 1, 3442-3445(2010). https://doi.org/10.1021/jz101441a
  12. Kim, T. Y., Lee, H. W., Stoller, M., Dreyer, D. R., Bielawski, C. W., Ruoff, R. S. and Suh, K. S., "High-Performance Supercapacitors Based on Poly(ionic liquid)-Modified Graphene Electrodes," ACS Nano, 5, 436-442(2011). https://doi.org/10.1021/nn101968p
  13. Chen, P.-C., Shen, G., Shi, Y., Chen, H. and Zhou, C., "Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single Walled Carbon Nanotube Hybrid Thin-Film Electrodes," ACS Nano, 4, 4403-4411(2010). https://doi.org/10.1021/nn100856y
  14. Li, Z., Mi, Y., Liu, X., Yang, S. and Wang, J., "Flexible Graphene/$MnO_2$Composite Papers for Supercapacitor Electrodes," J. Mater. Chem., 21, 14706-14711(2011). https://doi.org/10.1039/c1jm11941a
  15. Choi, B. G., Hong, J., Hong, W. H., Hammond, P. T. and Park, H., "Facilitated Ion Transport in All-Solid-State Flexible Supercapacitors," ACS Nano, 5, 7205-7213(2011). https://doi.org/10.1021/nn202020w

Cited by

  1. A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries vol.5, pp.18, 2013, https://doi.org/10.1039/c3nr02738d
  2. Electrochemical Properties of Graphene-vanadium Oxide Composite Prepared by Electro-deposition for Electrochemical Capacitors vol.53, pp.2, 2015, https://doi.org/10.9713/kcer.2015.53.2.131
  3. Electrodeposited Carbon Nanofiber Mats from Lignin-g-PAN Copolymer vol.44, pp.5, 2016, https://doi.org/10.5658/WOOD.2016.44.5.750
  4. Novel Flexible Supercapacitors Fabricated by Simple Integration of Electrodes, Binders, and Electrolytes into Glass Fibre Separators vol.17, pp.4, 2012, https://doi.org/10.5229/jkes.2014.17.4.237
  5. 그래핀 볼의 친환경 제조 및 특성 평가 vol.54, pp.6, 2016, https://doi.org/10.9713/kcer.2016.54.6.786
  6. 전착법을 이용한 슈퍼커패시터용 다공성 Co(OH)2 나노플레이크 박막의 제조 및 전기화학적 특성 vol.54, pp.2, 2012, https://doi.org/10.9713/kcer.2016.54.2.157
  7. 유전영동 현상을 이용한 그래핀 면저항의 선택적 향상 연구 vol.55, pp.2, 2012, https://doi.org/10.9713/kcer.2017.55.2.253