• Title/Summary/Keyword: 기공결함

Search Result 115, Processing Time 0.03 seconds

Role of CaO in the Sintering of 12Ce-TZP Ceramics (12Ce-TZP 세라믹스의 소결에서의 CaO의 역할)

  • 박정현;문성환;박한수
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.4
    • /
    • pp.65-65
    • /
    • 1992
  • Role of CaO in the sintering of 12Ce-TZP ceramics was studied. The addition of small amounts of CaO increase the densification rate of 12Ce-TZP by altering lattice defect structure and the diffusion coefficient of the rate controlling species, namely cerium and zirconium cations. CaO also inhibits grain growth during sintering and allows the sintering process to proceed to theoretical density by maintaining a high diffusion flux of vacancies from the pores to the grain boundaries. The inhibition of grain growth is accomplished by the segregation of solute at the grain boundaries, causing a decrease in the grain boundary mobility. The segregation of calcium was revealed by AES study.

Movement of graphene grain boundary and its interaction with defects during graphene growth (그래핀 결정입계의 이동 및 결함과의 상호작용)

  • Hwang, Suk-Seung;Choi, Byung-Sang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.3
    • /
    • pp.273-278
    • /
    • 2014
  • On poly and single crystalline Cu substrates, the graphene was synthesized by chemical vapor deposition(CVD). Optical microscopic images which were not possible to show the detailed characterization of graphene growth were adjusted and analyzed using image analyzing software. As a result it was possible to show the detailed growth mechanism of graphene by utilizing the image analysis. Nucleation of graphene on Cu grain boundary and its growth behavior into Cu grain are shown. In addition, the movement of graphene grain boundary interacting with Cu grain boundary and pinholes during growth was illustrated in detail, and the cause and result are discussed as a result of those interactions.

Comparison of internal porosity of dental titanium castings with different casting machines (주조방식에 따른 티타늄 주조체의 내부결함 비교)

  • Lee, Kyung-Eun;Kim, Bu-Sob;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.29 no.2
    • /
    • pp.129-140
    • /
    • 2007
  • The purpose of this study was to evaluate the titanium castability (internal porosity) between pressure type casting machine & centrifugal casting machine with air-vent or not. Internal porosity is a well-known problem in dental titanium casting, resulting in inferior mechanical properties of dental restorations. To evaluate the castability, the square plate was chosen. 40 plate patterns($20{\times}20{\times}1.8mm$)were attached to funnel-shaped sprue. Then 20 plate patterns were attached air-vent. They were invested in titanium investment material and cast in a pressure type casting machine(20castings) and centrifugal casting machine(20castings). Each group were divided with air-vent(10castings) or not(10castings). The titanium castings were evaluated by radiographic photograph for the location of the internal porosities. The percentage porosity of each specimen was determined using standardized digital radiographs. The results were analyzed with analysis of variance and t-test for paired comparison between two groups.

  • PDF

Application of a Boundary element Method to the Analysis of ultrasonic Scattering by Flaws (경계요소법을 이용한 결함의 초음파 산란장 해석)

  • Jeong, Hyun-Jo;Kim, Jin-Ho;Park, Moon-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2457-2465
    • /
    • 2002
  • Numerical modeling of a nondestructive testing system plays an important role in many aspects of quantitative nondestructive evaluation (QNDE). The ultimate goal of a model is to predict test results for a specific flaw in a material. Thus, in ultrasonic testing, a system model should include the transducer, its radiation pattern, the beam reflection and propagation, and scattering from defects. In this paper attention is focused on the scattering model and the scattered fields by defects are observed by an elastodynamic boundary element method. Flaw types addressed are void-like and crack-like flaws. When transverse ultrasonic waves are obliquely incident on the flaw, the angular distribution of far-field scattered displacements are calculated and presented in the form of A-scan mode. The component signals obtained from each scattering problem are identified and their differences are addressed. The numerical results are also compared with those obtained by high frequency approximate solutions.

Microstructures of Horizontally Grown Multicrystalline Silicon Ribbon Molten Silcon (용융 실리콘으로부터 수평 성장 된 다결정 실리콘 리본의 미세구조)

  • Ko, Seung-Jin;Jang, Bo-Yun;Kim, Joon-Soo;Ahn, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.222-222
    • /
    • 2010
  • 수평성장 방식을 이용하여 다결정 실리콘 리본을 제조하였으며, 제조된 리본의 미세구조 및 결함을 분석하였다. 기존 잉곳 성장 및 절단 공정을 통해 제조된 실리콘 웨이퍼는 절단 중 실리콘의 손살 때문에 단가를 상승 시킨다. 따라서 실리콘 용탕으로부터 직접 웨이퍼를 제조하는 리본 기술이 활발히 연구되고 있다. 본 연구에서는 수명 성장 법을 이용하여 용융 실리콘으로부터 다결정 실리콘 리본을 제조 하였다. 제조 된 리본의 크기$50{\times}50$ mm였으며 두께는 $375{\pm}50{\mu}m$ 이었다. 또한, 미세구조 분석 결과 결정들의 형상이 불규칙적 이었으며, 바닥에서부터 윗부분까지 한 방향으로 성장되었다. 수직성장된 결정들의 평균 입경은 $50.2{\mu}m$ 이었다. 전위 (dislocations ), 이중(twins), 그리고 기공 (pores) 같은 구조적 결점들과 SiC, 탄소, 그러고 산소와 같은 불순물 결함 등이 관찰 되었다. 본 연구를 통해 제조된 다결정 실리콘 리본은 태양전지용 웨이퍼로 응용 가능 할 것으로 판단된다.

  • PDF

Reviews on Post-synthetic Modification of Metal-Organic Frameworks Membranes (다결정 금속 유기 골격체 분리막의 후처리 성능 제어기술 개발 동향)

  • Hyuk Taek, Kwon;Kiwon, Eum
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.367-382
    • /
    • 2022
  • Numerous metal-organic frameworks (MOFs) produced by periodic combinations of organic ligands and metal ions or metal-oxo clusters have led the way for the creation of energy-efficient membrane-based separations that may serve as viable replacements for traditional thermal counterparts. Although tremendous progress has been made over the past decade in the synthesis of polycrystalline MOF membranes, only a small number of MOFs have been exploited in the relevant research. Intercrystalline defects, or nonselective diffusion routes in polycrystalline membranes, are likely the reason behind the delay. Postsynthetic modifications (PSMs) are newly emerging strategies for providing polycrystalline MOF membrane diversity by leveraging advanced membranes as a platform and improving their separation capabilities via physical and/or chemical treatments; therefore, neither designing and developing MOFs nor tailoring membrane synthesis techniques for focused MOFs is necessary. In this minireview, seven subclasses of PSM techniques that have recently been adapted to polycrystalline MOF membranes are outlined, along with obstacles and future directions.

Fabrication of Porous MoSi2 material for Heating Element through Self-propagating High Temperature Synthesis Process (연소합성법에 의한 발열성 다공질 MoSi2계 재료의 제조)

  • Song, In-Hyuck;Yun, Jung-Yeul;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.62-68
    • /
    • 2004
  • In this study, SHS process has been employed to fabricate porous $MoSi_2$ material with electric-resistive heating capability through the control of pore size. The preform for SHS reaction was consisted of molybdenum powder with different sizes and silicon powder with different contained quantity. The size of the $MoSi_2$ particles thus formed was determined by the generated heat of combustion, not by the size of molybdenum powder. However, the pore size of $MoSi_2$ composite was proportional to the particle size of molybdenum powder. that is the coarser the molybdenum powder used, the larget the formed pore size. Based on these results, the porous $MoSi_2$ composite could be fabricated with a desired pore size. By orienting the porous molybdenum disilicide-based material in the form of pore size gradient, porous materials used for filters with improved dirt-holding capacity can be manufactured.

Acoustic Emission Testing in Cylindrical-Type Storage Tank (원통형 저장탱크의 음향방출시험)

  • Kwon Jeong Rock;Lyu Geun Jun;Lee Tae Hee;Kim Jee Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.1 s.9
    • /
    • pp.9-15
    • /
    • 2000
  • In order to investigate the structural defects of a cylindrical-type toluene storage tank, we carried out the acoustic emissions. The storage tank was manufactured with high strength steel in 1978 and its's first and second courses from bottom were entirely repaired, recently. Acoustic emissions were monitored with real time according to load sequences in the $75{\~}84\%$ level range of maximum allowable load. Our results show a non-genuine acoustic emissions as well as a genuine characteristics. The pseudo emissions considered as valve noises were transiently occurred on shut-off processes of inlet valve regardless of water loading. The acoustic emission events occurred during water filling phase were estimated due to defects, and in the $75{\~}84\%$ test load level no evidences of defect growth were observed. Those defects were ascertained as weld cracks and porosities through the post radiography testing conducted near active sensors.

  • PDF

Evaluation of Micro-defects and Air Tightness of Al Die-casting by Impregnation of Organic Solvent (유기용제 함침법을 통한 알루미늄 다이캐스팅의 미세결함 및 기밀성 평가)

  • Lee, Jin-Wook;Cho, Chang-hyun;Kim, Sung-Gye;Ko, Young-Gun;Kim, Dong-Ju
    • Journal of Korea Foundry Society
    • /
    • v.42 no.4
    • /
    • pp.218-225
    • /
    • 2022
  • For hydrogen-vehicle applications (air pressure control valve housing, APCVH), an investigation was conducted to determine how micro-defects in a high- pressure die-casted Al alloy (industrial code: ALDC12) could be controlled by means of a post-treatment using an organic-based impregnation solution in order to improve the air- tightness of the die-casted Al sample. Two different impregnation solutions were proposed and its test results were compared to a imported product from Japan with respect to the processing variables used. A structural investigation of the components under study was conducted by means of computer tomography and 3D X-ray micro-CT. These observations revealed that the use of the impregnation treatment to seal micro-defects led to highly significant and beneficial changes which were attributed mainly to interconnections among inherent micro-pores. A leak test after impregnation revealed that the performance improvement rate of the die-casted Al sample was ~70% for INNO-01. Therefore, the developed impregnation solutions offer an effective strategy to control the micro-defects found in various vehicle parts via die-casting.

Investigation of Gas Evolution in Shell Cores during Casting Processes of Aluminum Alloys (알루미늄 합금 주조공정의 쉘 코아 가스 발생 전산모사 연구)

  • In-Sung Cho;Jeong-Ho Nam;Hee-Soo Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.4
    • /
    • pp.187-193
    • /
    • 2023
  • Shell core making is an excellent process in terms of formability and desanding, but when the molten aluminum comes into con- tact with the shell core, gas generation by pyrolysis of the resin is inevitable. In addition, when the ventilation is inadequate, pores will remain inside the casting, which can directly lead to defects of the casting. While studies on the gas generation behavior of shell core making have been reported, the modeling of gas generation has not been extensively investigated. We will develop a gas evolution analysis method that considers the relationship between temperature and gas quantity for the core to be developed. We then use the developed method to analyze the flow and solidification behavior of metal molten metal during core mold design and low-pressure casting of cylinder head products, and predict the occurrence of casting defects to derive a casting method that min- imizes the occurrence of defects.