• Title/Summary/Keyword: 기계-화학적 나노리소그래피

Search Result 7, Processing Time 0.039 seconds

미세탐침기반 기계-화학적 리소그래피공정을 이용한 3차원 미세 구조물 제작에 관한 기초 연구

  • 박미석;성인하;김대은;장원석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.128-128
    • /
    • 2004
  • 나노 스케일의 구조물 제작에 있어서 기존의 리소그래피 공정들이 가지는 한계점을 극복하기 위해서 다양한 방식의 새로운 공정들이 개발되고 있다. 특히, 기계-화학적 가공공정을 이용한 미세탐침 기반의 나노리소그래피 기술(Mechano-Chemical Scaning Probe based Lithography; MC-SPL)은 기존의 포토리소그래피 공정의 단점을 극복하고, 보다 경제적이며 패턴 디자인 변경이 유연한 미세 패턴 제작 기술임이 확인되었다.(중략)

  • PDF

나노스케일 절삭현상의 분자동역학적 시뮬레이션

  • 성인하;김대은;장원석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.129-129
    • /
    • 2004
  • 본 연구에서는 나노스케일 절삭가공(nanometric cutting process)시에 미세 팁과 가공표면사이에서 발생하는 현상들에 대하여 분자동역학적 시뮬레이션을 통하여 살펴보았다 본 연구의 목적은 실험적으로는 파악하기 어려운 극미세 가공에서 발생하는 나노트라이볼로지적 현상을 이해하고, 이를 토대로 기계적 가공에 기반하여 개발된 '기계-화학적 나노리소그래피(Mechano-Chemical Scanning Probe Lithography)' 공정을 개선, 발전시키는데 있다. 기계-화학적 나노리소그래피 기술은 극초박막의 리지스트(resist)를 미세탐침을 이용하여 기계적 가공으로 제거하고 이로인해 표면으로 드러난 모재부분을 화학적 에칭에 의해 추가로 가공하여 원하는 패턴형상을 얻어내는 기술이다.(중략)

  • PDF

Nanoprobe-based Mechano-Chemical Scanning Probe Lithography Technology (나노프로브 응용 기계-화학적 나노리소그래피 기술)

  • Sung, In-Ha;Kim, Dae-Eun;Shin, Bo-Sung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1043-1047
    • /
    • 2003
  • With the advancement of micro-systems and nanotechnology, the need for ultra-precision fabrication techniques has been steadily increasing. In this paper, a novel nano-structure fabrication process that is based on the fundamental understanding of nano-scale tribological interaction is introduced. The process, which is called Mechano-Chemical Scanning Probe Lithography (MC-SPL), has two steps, namely, mechanical scribing for the removal of a resist layer and selective chemical etching on the scribed regions. Organic monolayers are used as a resist material, since it is essential for the resist to be as thin as possible in order to fabricate more precise patterns and surface structures. The results show that high resolution patterns with sub-micrometer scale width can be fabricated on both silicon and various metal surfaces by using this technique.

  • PDF

Fabrication ofMicro/Nano-patterns using MC-SPL (Mechano-Chemical Scanning Probe Lithography) Process (미세탐침기반 기계-화학적 리소그래피공정에 의한 마이크로/나노패턴 제작)

  • 성인하;김대은
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.228-233
    • /
    • 2002
  • In this work, a new non-photolithographic micro-fabrication technique is presented. The motivation of this work is to overcome the demerits of the most commonly used photolithographic techniques. The micro-fabrication technique presented in this work is a two-step process which consists of mechanical scribing followed by chemical etching. This method has many advantages over other micro-fabrication techniques since it is simple, cost-effective, rapid, and flexible. Also, the technique can be used to obtain a metal structure which has sub-micrometer width patterns. In this paper, the concept of this method and its application to microsystem technology are described.

Localized Oxidation of (100) Silicon Surface by Pulsed Electrochemical Processes Based on AFM (AFM 기반 Pulse 를 이용한 전기화학적 가공)

  • Lee, Jeong-Min;Kim, Sun-Ho;Park, Jeong-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1631-1636
    • /
    • 2010
  • In this study, we demonstrate a nano-scale lithograph obtained on localized (100) silicon (p-type) surface using by modified AFM (Atomic force microscope) apparatuses and by adopting controlling methods. AFM-based experimental apparatuses are connected to a customized pulse generator that supplies electricity between the conductive tip and the silicon surface, while maintaining a constant humidity throughout the lithography process. The pulse durations are controlled according to various experimental conditions. The electrochemical reaction induced by the pulses occurs in the gap between the conductive tip and silicon surface and result in the formation of nanoscale oxide particles. Oxide particles with various heights and widths can be created by AFM surface modification; the size of the oxide particle depends on the pulse durations and the applied electrical conditions under a humid environment.

HeLa Cell Culture on Nanoimprinted Patterns Using Conducting Polymer (전도성 고분자 나노임프린트 패턴 상의 HeLa 세포 배양)

  • Ahn, Junhyoung;Park, Kyungsook;Lee, Suok;Jung, Sanghee;Lim, Hyungjun;Shin, Yong-Beom;Lee, JaeJong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.1
    • /
    • pp.63-67
    • /
    • 2017
  • In bioscience and biotechnology, the research of fundamental life mechanisms and their diseases caused by insufficiency is important. The study of a whole organism is difficult and sometimes impossible because of DNA, RNA, proteins, cellular organelles, various cells, and organs. Cell cultures can provide a simple method for researching cellular mechanisms and conditions, both in terms of physiological performance, and in response to chemical stimulation. According to conventional cell culture methodology, the flat surface is used with surface treatments for cell adhesion on the surface. Micro- and nanoscale patterns have been developed with chemical and biochemical modifications for cell immobilization. In this study, HeLa cell culture on nanostructures patterns was studied, including the 300 nm line and 150 nm pillar structures, using nanoimprint lithography and pyrrole as a biocompatible conducting polymer.

Preparation of Flexible 3D Porous Polyaniline Film for High-Performance Electrochemical pH Sensor (고성능 전기 화학 pH 센서를 위한 유연한 3차원 다공성 폴리아닐린 필름 제조)

  • Park, Hong Jun;Park, Seung Hwa;Kim, Ho Jun;Lee, Kyoung G.;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.539-544
    • /
    • 2020
  • A three-dimensional (3D) porous polyaniline (PANI) film was fabricated by a combined photo-and soft-lithography technique based on a large-area nanopillar array, followed by a controlled chemical dilute polymerization. The as-obtained 3D PANI film consisted of hierarchically interconnected PANI nanofibers, resulting in a 3D hierarchical nanoweb film with a large surface and open porous structure. Using electrochemical measurements, the resulting 3D PANI film was demonstrated as a flexible pH sensor electrode, exhibiting a high sensitivity of 60.3 mV/pH, which is close to the ideal Nernstian behavior. In addition, the 3D PANI electrode showed a fast response time of 10 s, good repeatability, and good selectivity. When the 3D PANI electrode was measured under a mechanically bent state, the electrode exhibited a high sensitivity of 60.4 mV/pH, demonstrating flexible pH sensor performance.