Browse > Article
http://dx.doi.org/10.14478/ace.2020.1065

Preparation of Flexible 3D Porous Polyaniline Film for High-Performance Electrochemical pH Sensor  

Park, Hong Jun (Department of Chemical Engineering, Kangwon National University)
Park, Seung Hwa (Department of Chemical Engineering, Kangwon National University)
Kim, Ho Jun (Department of Chemical Engineering, Kangwon National University)
Lee, Kyoung G. (Nano-Bio Application Team, National Nanofab Center (NNFC))
Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
Publication Information
Applied Chemistry for Engineering / v.31, no.5, 2020 , pp. 539-544 More about this Journal
Abstract
A three-dimensional (3D) porous polyaniline (PANI) film was fabricated by a combined photo-and soft-lithography technique based on a large-area nanopillar array, followed by a controlled chemical dilute polymerization. The as-obtained 3D PANI film consisted of hierarchically interconnected PANI nanofibers, resulting in a 3D hierarchical nanoweb film with a large surface and open porous structure. Using electrochemical measurements, the resulting 3D PANI film was demonstrated as a flexible pH sensor electrode, exhibiting a high sensitivity of 60.3 mV/pH, which is close to the ideal Nernstian behavior. In addition, the 3D PANI electrode showed a fast response time of 10 s, good repeatability, and good selectivity. When the 3D PANI electrode was measured under a mechanically bent state, the electrode exhibited a high sensitivity of 60.4 mV/pH, demonstrating flexible pH sensor performance.
Keywords
pH sensor; Polyaniline; Electrochemistry; 3D structure; Potentiometry;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. H. Yoon, H. J. Park, S. H. Park, K. G. Lee, and B. G. Choi, Electrochemical characterization of reduced graphene oxide as an ion-to-electron transducer and application of screen-printed all-solid-state potassium ion sensors, Carbon Lett., 30, 73-80 (2020).   DOI
2 A. U. Alam, Y. Qin, S. Nambiar, J. T. W. Yeow, M. M. R. Howlader, N. Hu, and M. J. Deen, Polymers and organic materials-based pH sensors for healthcare applications, Prog. Mater. Sci., 96, 174-216 (2018).   DOI
3 J. M. Pingarron, J. Labuda, J. Barek, C. M. A. Brett, M. F. Camoes, M. Fojta, and D. B. Hibbert, Terminology of electrochemical methods of analysis (IUPAC recommendations 2019), Pure Appl. Chem., 92, 641-694 (2020).   DOI
4 S. Baliga, S. Muglikar, and R. Kale, Salivary pH: A diagnostic biomarker, J. Indian Soc. Periodonto., 17, 461-465 (2013).   DOI
5 W. P. Nikolajek, and H. M. Emrich, pH of sweat of patients with cystic fibrosis, Klin. Wschr., 54, 287-288 (1976).   DOI
6 M. B. Abelson, A. A. Sadun, I. J. Udell, and J. H. Weston, Alkaline tear pH in ocular rosacea, Am. J. Ophthalmol., 90, 866-869 (1980).   DOI
7 K. Chaisiwamongkhol, C. Batchelor-Mcauley, and R. G. Compton, Amperometric micro pH measurements in oxygenated saliva, Analyst, 142, 2828-2835 (2017).   DOI
8 T. Kwong, C. Robinson, D. Spencer, O. J. Wiseman, and F. E. K. Frankl, Accuracy of urine pH testing in a regional metabolic renal clinic: Is the dipstick accurate enough? Urolithiasis, 41, 129-132 (2013).   DOI
9 J. H. Yoon, S. Kim, H. J. Park, Y. K. Kim, D. X. Oh, H. Cho, K. G. Lee, S. Y. Hwang, J. Park, and B. G. Choi, Highly self-healable and flexible cable-type pH sensor for real-time monitoring of human fluids, Biosens. Bioelectron., 150, 111946 (2020).   DOI
10 J. Ding and W. Qin, Recent advances in potentiometric biosensors, Trends Anlyt. Chem., 124, 115803 (2020).   DOI
11 A. J. Bandodkar and J. Wang, Non-invasive wearable electrochemical sensors: A review, Trends Biotechnol., 32, 363-371 (2014).   DOI
12 Y. Liao and J. Chou, Preparation and characteristics of ruthenium dioxide for pH array sensors with real-time measurement system, Sens. Actuators B, Chem., 128, 603-612 (2008).   DOI
13 H. Noby, A. H. El-Shazly, M. F. Elkady, and M. Ohshima, Novel preparation of self-assembled HCl-doped polyaniline nanotubes using compressed $CO_2$-assisted polymerization, Polymer, 156, 71-75 (2018).   DOI
14 J. H. Yoon, S. B. Hong, S. Yun, S. J. Lee, T. J. Lee, K. G. Lee, and B. G. Choi, High performance flexible pH sensor based on polyaniline nanopillar array electrode, J. Colloid Interface Sci., 490, 53-58 (2017).   DOI
15 J. H. Yoon, K. H. Kim, N. H. Bae, G. S. Sim, Y. Oh, S. J. Lee, T. J. Lee, K. G. Lee, and B. G. Choi, Fabrication of newspaper-based potentiometric platform for flexible and disposable ion sensors, J. Colloid Interface Sci., 508, 167-173 (2017).   DOI
16 L. Manjakkal, S. Dervin, and R. Dahiya, Flexible potentiometric pH sensors for wearable systems, RSC Adv., 10, 8594-8617 (2020).   DOI
17 M. Parrilla, I. Ortiz-Gomez, R. Canovas, A. Salinas-Castillo, M. Cuartero, and G. A. Crespo, Wearable potentiometric ion patch for on-body electrolyte monitoring in sweat: Toward a validation strategy to ensure physiological relevance, Anal. Chem., 91, 8644-8651 (2019).   DOI
18 Y. Qin, H. Kwon, M. M. R. Howlader, and M. J. Deen, Microfabricated electrochemical pH and free chlorine sensors for water quality monitoring: Recent advances and research challenges, RSC Adv., 5, 69086-69109 (2015).   DOI
19 W. Huang, H. Cao, S. Deb, M. Chiao, and J. C. Chiao, A flexible pH sensor based on the iridium oxide sensing film, Sens. Actuators A, Phys., 169, 1-11 (2011).   DOI
20 L. Telli, B. Brahimi, and A. Hammouche, Study of a pH sensor with MnO2 and montmorillonite-based solid-state internal reference, Solid State Ion., 128, 225-259 (2000).
21 Y. Liao and J. Chou, Preparation and characterization of the titanium dioxide thin films used for pH electrode and procaine drug sensor by sol-gel method, Mater. Chem. Phys., 114, 542-548 (2009).   DOI
22 M. Pospisilova, G. Kuncova, and J. Trogl, Fiber-optic chemical sensors and fiber-optic bio-sensors, Sensors, 15, 25208-25259 (2015).   DOI
23 S. Islam, H. Bakhtiar, S. Naseem, M. S. B. A. Aziz, N. Bidin, S. Riaz, and J. Ali, Surface functionality and optical properties impact of phenol red dye on mesoporous silica matrix for fiber optic pH sensing, Sens. Actuators A, Phys., 276, 267-277 (2018).   DOI
24 K. Hammarling, M. Engholm, H. Andersson, M. Sandberg, and H. Nilsson, Broad-range hydrogel-based pH sensor with capacitive readout manufactured on a flexible substrate, Chemosensors, 6, 30 (2018).   DOI
25 C. Tsai, J. Chou, T. Sun, and S. Hsiung, Study on the time-dependent slow response of the tin oxide pH electrode, IEEE Sens. J., 6, 1243-1249 (2006).   DOI
26 B. Lakard, G. Herlem, S. Lakard, R. Guyetant, and B. Fahys, Potentiometric pH sensors based on electrodeposited polymers, Polymer, 46, 12233-12239 (2005).   DOI
27 S. Chinnathambi and G. J. W. Euverink, Polyaniline functionalized electrochemically reduced graphene oxide chemiresistive sensor to monitor the pH in real time during microbial fermentations, Sens. Actuators B, Chem., 264, 38-44 (2018).   DOI
28 S. Hou, J. Dong, M. Tang, X. Jiang, Z. Jiao, and B. Zhao, Triple-interpenetrated lanthanide-organic framework as dual wave bands self-calibrated pH luminescent probe, Anal. Chem., 91, 5455-5460 (2019).   DOI
29 Y. Zhao, M. Lei, S. Liu, and Q. Zhao, Smart hydrogel-based optical fiber SPR sensor for pH measurements, Sens. Actuators B, Chem., 261, 226-232 (2018).   DOI
30 H. J. Park, J. H. Yoon, K. G. Lee, and B. G. Choi, Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays, Nano Converg., 6, 9 (2019).   DOI
31 M. Tabata, C. Ratanaporncharoen, A. Asano, Y. Kitasako, M. Ikeda, T. Goda, A. Matsumoto, J. Tagami, and Y. Miyahara, Miniaturized Ir/IrOx pH sensor for quantitative diagnosis of dental caries, Procedia Eng., 168, 598-601 (2016).   DOI
32 K. Shiu, F. Song, and K. Lau, Effects of polymer thickness on the potentiometric pH responses of polypyrrole modified glassy carbon electrode, J. Electroanal. Chem., 476, 109-117 (1999).   DOI
33 P. Marsh, L. Manjakkal, X. Yang, M. Huerta, T. Le, L. Thiel, J. C. Chiao, H. Cao, and R. Dahiya, Flexible iridium oxide based pH sensor integrated with inductively coupled wireless transmission system for wearable applications, IEEE Sens. J., 20, 5130-5138 (2020).   DOI
34 S. Shahrestani, M. C. Ismail, S. Kakooei, M. Beheshti, M. Zabihiazadboni, and M. A. Zavareh, Iridium oxide pH sensor based on stainless steel wire for pH mapping on metal surface, IOP Conf. Ser. Mater. Sci. Eng., 328, 012014 (2018).   DOI
35 S. H. Park, J. Jeong, S. J. Kim, K. H. Kim, S. H. Lee, N. H. Bae, K. G. Lee, and B. G. Choi, Large-area and 3D polyaniline nanoweb film for flexible supercapacitors with high rate capability and long cycle life, ACS Appl. Energy Mater., DOI: 10.1021/acsaem.0c01140 (2020).
36 H. J. Park, J. Jeong, J. H. Yoon, S. G. Son, Y. K. Kim, D. H. Kim, K. G. Lee, and B. G. Choi, Preparation of ultrathin defect-free graphene sheets from graphite via fluidic delamination for solid-contact ion-to-electron transducers in potentiometric sensors, J. Colloid Interface Sci., 560, 817-824 (2020).   DOI
37 S. G. Son, H. J. Park, Y. K. Kim, H. Cho, and B. G. Choi, Fabrication of low-cost and flexible potassium ion sensors based on screen printing and their electrochemical characteristics, ACS Appl. Chem. Eng., 30, 737-741 (2019).
38 J. H. Yoon, S. Kim, Y. Eom, J. M. Koo, H. Cho, T. J. Lee, K. G. Lee, H. J. Park, Y. K. Kim, H. Yoo, S. Y. Hwang, J. Park, and B. G. Choi, Extremely fast self-healable bio-based supramolecular polymer for wearable real-time sweat-monitoring sensor, ACS Appl. Mater. Interfaces, 11, 46165-46175 (2019).   DOI
39 M. T. Ghoneim, A. Nguyen, N. Dereje, J. Huang, G. C. Moore, P. J. Murzynowski, and C. Dagdeviren, Recent progress in electrochemical pH-sensing materials and configurations for biomedical applications, Chem. Rev., 119, 5248-5297 (2019).   DOI
40 T. Lindfors, and A. Ivaska, pH sensitivity of polyaniline and its substituted derivatives, J. Electroanal. Chem., 531, 43-52 (2002).   DOI
41 R. P. Buck and E. Lindner, Recommendations for nomenclature of ion-selective electrodes (IUPAC recommendations 1994), Pure Appl. Chem., 66, 2527-2536 (1994).   DOI