• 제목/요약/키워드: 기계학습 기반 예측 알고리즘

검색결과 148건 처리시간 0.029초

기계습의 영상인식결과에 대한 입력영상의 영향도 분석 기법 (Analysis Method of influence of input for Image recognition result of machine learning)

  • 김도완;김우성;이은헌;김현철
    • 한국컴퓨터교육학회 학술대회
    • /
    • 한국컴퓨터교육학회 2017년도 하계학술대회
    • /
    • pp.209-211
    • /
    • 2017
  • 기계학습은 인공지능(AI, Artificial Intelligence)의 일종으로 다른 인공지능 알고리즘이 정해진 규칙을 기반으로 주어진 임무(Task)를 해결하는 것과는 달리, 기계학습은 수집된 Data를 기반으로 최적의 솔루션을 학습한 후 미래의 값들을 예측하거나 해석하는 방법을 사용하고 있다. 더욱이 인터넷을 통한 연결성의 확대와 컴퓨터의 연산능력 발전으로 가능하게 된 Big-Data를 기반으로 하고 있어 이전의 인공지능 알고리즘에 비해 월등한 성능을 보여주고 있다. 그러나 기계학습 알고리즘이 Data를 학습할 때 학습 결과를 사람이 해석하기에 너무 복잡하여 사람이 그 내부 구조를 이해하는 것은 사실상 불가능하고, 이에 따라 학습된 기계학습 모델의 단점 또는 한계 등을 알지 못하는 문제가 있다. 본 연구에서는 이러한 블랙박스화된 기계학습 알고리즘의 특성을 이해하기 위해, 기계학습 알고리즘이 특정 입력에 대한 결과를 예측할 때 어떤 입력들로 부터 영향을 많이 받는지 그리고 어떤 입력으로부터 영향을 적게 받는지를 알아보는 방법을 소개하고 기존 연구의 단점을 개선하기 위한 방법을 제시한다.

  • PDF

회전수가 변하는 기기의 상태 진단에 있어서 특성 기반 분류 알고리즘과 합성곱 기반 알고리즘의 예측 정확도 비교 (Comparison of Classification and Convolution algorithm in Condition assessment of the Failure Modes in Rotational equipments with varying speed)

  • 문기영;황세윤;이장현
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 춘계학술대회
    • /
    • pp.301-301
    • /
    • 2022
  • 본 연구는 운영 조건이 달라짐에 따라 회전수가 변하는 기기의 정상적 가동 여부와 고장 종류를 판별하기 위한 인공지능 알고리즘의 적용을 다루고 있다. 회전수가 변하는 장비로부터 계측된 상태 모니터링 센서의 신호는 비정상(non-stationary)적 특성이 있으므로, 상태 신호의 한계치가 고장 판별의 기준이 되기 어렵다는 점을 해결하고자 하였다. 정상 가동 여부는 이상 감지에 효율적인 오토인코더 및 기계학습 알고리즘을 적용하였으며, 고장 종류 판별에는 기계학습법과 합성곱 기반의 심층학습 방법을 적용하였다. 변하는 회전수와 연계된 주파수의 비정상적 시계열도 적절한 고장 특징 (Feature)로 대변될 수 있도록 시간 및 주파수 영역에서 특징 벡터를 구성할 수 있음을 예제로 설명하였다. 차원 축소 및 카이 제곱 기법을 적용하여 최적의 특징 벡터를 추출하여 기계학습의 분류 알고리즘이 비정상적 회전 신호를 가진 장비의 고장 예측에 활용될 수 있음을 보였다. 이 과정에서 k-NN(k-Nearest Neighbor), SVM(Support Vector Machine), Random Forest의 기계학습 알고리즘을 적용하였다. 또한 시계열 기반의 오토인코더 및 CNN (Convolution Neural Network) 적용하여 이상 감지와 고장진단을 수행한 결과를 비교하여 제시하였다.

  • PDF

Markov Chain을 응용한 학습 성과 예측 방법 개선 (Improving learning outcome prediction method by applying Markov Chain)

  • 황철현
    • 문화기술의 융합
    • /
    • 제10권4호
    • /
    • pp.595-600
    • /
    • 2024
  • 학습 성과를 예측하거나 학습 경로를 최적화하는 연구 분야에서 기계학습과 같은 인공지능 기술의 사용이 점차 증가하면서 교육 분야의 인공지능 활용은 점차 많은 진전을 보이고 있다. 이러한 연구는 점차 심층학습과 강화학습과 같은 좀 더 고도화된 인공지능 방법으로 진화하고 있다. 본 연구는 학습자의 과거 학습 성과-이력 데이터를 기반으로 미래의 학습 성과를 예측하는 방법을 개선하는 것이다. 따라서 예측 성능을 높이기 위해 Markov Chain 방법을 응용한 조건부 확률을 제안한다. 이 방법은 기계학습에 의한 분류 예측에 추가하여 학습자가 학습 이력 데이터를 분류 예측에 추가함으로써 분류기의 예측 성능을 향상 시키기 위해 사용된다. 제안 방법의 효과를 확인하기 위해서 실증 데이터인 '교구 기반의 유아 교육 학습 성과 데이터'를 활용하여 기존의 분류 알고리즘과 제안 방법에 의한 분류 성능 지표를 비교하는 실험을 수행하였다. 실험 결과, 분류 알고리즘만 단독 사용한 사례보다 제안 방법에 의한 사례에서 더 높은 성능 지표를 산출한다는 것을 확인할 수 있었다.

단기 전력수요 예측을 위한 유전 알고리즘 기반의 특징 선택 기법 (Genetic Algorithm-Based Feature Selection Scheme for Short-Term Load Forecasting)

  • 박성우;문지훈;황인준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.813-816
    • /
    • 2019
  • 최근 에너지 부족 문제 및 환경 문제의 해결수단으로 스마트 그리드가 많은 주목을 받고 있다. 스마트 그리드 기술은 에너지를 효율적으로 사용하는 데 도움을 주며, 이를 위해서는 더욱 정확한 전력수요 예측이 필요하다. 다양한 기계학습 기법 기반의 전력수요 예측 모델은 좋은 예측 성능을 보이지만 입력 변수의 개수가 증가할수록 처리해야 하는 데이터의 양이 기하급수적으로 증가한다는 단점이 존재한다. 또한, 불필요한 데이터를 입력 변수로 선정할 경우에는 모델의 정확도가 저하될 수도 있다. 이러한 문제를 해결하기 위해 다양한 특징 선택 기법들이 제안되었지만, 기존의 특징 선택 기법은 모델의 성능을 고려하지 않았기 때문에 실제 적용 시 오히려 모델의 성능이 저하될 수도 있다. 이에 본 논문은 유전 알고리즘을 기반으로 한 특징 선택 기법을 제안한다. 유전 알고리즘을 통해 각 모델에 맞는 최적의 입력 변수를 선택함으로써 빠른 학습 속도와 높은 정확도를 기대할 수 있다.

실시간 데이터 처리를 위한 아파치 스파크 기반 기계 학습 라이브러리 성능 비교 (A Performance Comparison of Machine Learning Library based on Apache Spark for Real-time Data Processing)

  • 송준석;김상영;송병후;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2017년도 제55차 동계학술대회논문집 25권1호
    • /
    • pp.15-16
    • /
    • 2017
  • IoT 시대가 도래함에 따라 실시간으로 대규모 데이터가 발생하고 있으며 이를 효율적으로 처리하고 활용하기 위한 분산 처리 및 기계 학습에 대한 관심이 높아지고 있다. 아파치 스파크는 RDD 기반의 인 메모리 처리 방식을 지원하는 분산 처리 플랫폼으로 다양한 기계 학습 라이브러리와의 연동을 지원하여 최근 차세대 빅 데이터 분석 엔진으로 주목받고 있다. 본 논문에서는 아파치 스파크 기반 기계 학습 라이브러리 성능 비교를 통해 아파치 스파크와 연동 가능한 기계 학습라이브러리인 MLlib와 아파치 머하웃, SparkR의 데이터 처리 성능을 비교한다. 이를 위해, 대표적인 기계 학습 알고리즘인 나이브 베이즈 알고리즘을 사용했으며 학습 시간 및 예측 시간을 비교하여 아파치 스파크 기반에서 실시간 데이터 처리에 적합한 기계 학습 라이브러리를 확인한다.

  • PDF

기계학습을 이용한 비육돈의 비율일당증체분석 (Analysis on Proportional Daily Weight Increase of Swine Using Machine Learning)

  • 이웅섭;황세운;김종현
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.183-185
    • /
    • 2015
  • 최근 기계학습기반 빅데이터 분석이 많은 주목을 받으며 축산분야에도 다양한 기계학습 방안들이 적용되고 있다. 많은 양의 생체데이터와 환경데이터에 기계학습기법을 적용하여 분석함으로써 이전에는 발견하지 못했던 새로운 사실들을 밝혀낼 수 있다. 본 연구에서는 실험돈사에서 수집된 데이터를 기반으로 비육돈의 비율일당증체를 예측하는 방안에 대해서 다루었다. 비율일당증체 예측을 위해서 매일 측정된 온도/습도/이산화탄소/풍속의 일평균/일최소/일최대 데이터(환경데이터)과 비율일당증체(생체데이터)를 이용하였고, 트리기반 알고리즘을 사용하여 비율일당증체 예측수식을 도출하였다. 이를 통해 평균 온도가 비율일당증체에 가장 큰 영향을 미치는 요소인 것을 보였다. 본 연구의 결과는 각 양돈농가에서 비육돈의 성장을 예측하는데 유용하게 활용될 수 있을 것이다.

  • PDF

u -Office 서비스 추론 기술을 위한 기계학습 기반 알고리즘

  • 김승혜;홍은재;박병철;박형곤
    • 정보와 통신
    • /
    • 제32권4호
    • /
    • pp.10-15
    • /
    • 2015
  • 본고에서는 u-Office 서비스를 실현하기 위하여 이동 단말 기기로부터 수신한 사용자의 시간 및 위치 이동 정보를 이용해서 사용자에게 유용한 서비스를 제공하는 데 필요한 사용자 맞춤형 서비스 제공 통합 프레임워크 및 추론 기술 알고리즘에 대해 기술하고자 한다. 사용자 맞춤형 서비스제공 통합 프레임워크는 사용자 이동단말기 및 시간 및 이동 데이터를 저장하는 AP, AP의 데이터를 수집하는 데이터베이스, 사용자 이동 단말 어플리케이션 등으로 구성되어있으며, 사용자의 시간 및 위치 정보를 학습하여 이동 경로를 예측하고 유용한 서비스를 제공하기 위해 사용된 기계학습 기반 추론 알고리즘에 대하여 알아본다. u-Office 서비스를 실현하기 위하여 실제로 캠퍼스 및 교실범위로 구현한 사용자 패턴기반 맞춤형 서비스 프레임워크에 대해 알아보고 제공 가능한 서비스에 대하여 논의한다.

고압 다이캐스팅 공정에서 제품 결함을 사전 예측하기 위한 기계 학습 기반의 공정관리 방안 연구 (Study on the Process Management for Casting Defects Detection in High Pressure Die Casting based on Machine Learning Algorithm)

  • 이승로;이승철;한도석;김낙수
    • 한국주조공학회지
    • /
    • 제41권6호
    • /
    • pp.521-527
    • /
    • 2021
  • 본 연구는 고압 다이캐스팅 공정에서 제품 결함을 사전에 예측하기 위한 기계 학습 기반의 공정 관리 모델 개발에 관한 연구이다. 모델은 이전 사이클에서의 온도를 입력받고, 사이클에 걸쳐서 나타나는 특징을 인식하여 다음 사이클의 결함 발생 여부를 예측한다. 기어 박스 형상에 대하여 제안된 알고리즘을 적용하여, 3 사이클의 정보를 통해서 98 .9%의 정확도와 96.8 %의 재현율로 제품 수축 결함을 사전에 예측하였다.

5G 네트워크에서 기계학습 기반 트래픽 예측을 통한 네트워크 슬라이싱 자원 예약 기법 (Machine Learning-based Network Slicing Resource Reservation Scheme in 5G Network)

  • 이펄원;이아름;박수용;신용태
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.56-59
    • /
    • 2020
  • 최근 초저지연, 초고속, 초연결 네트워크를 요구하는 기술들이 급속하게 발전하고 있다. 기존 4G 네트워크는 위 요구사항을 만족할 수 없었기 때문에 5G 네트워크가 등장했다. 5G 네트워크는 네트워크 가상화 기반 네트워크 슬라이싱을 통해 각각의 서비스 마다 독립적인 네트워크 환경을 제공한다. 그러나 네트워크에 참여하는 서비스가 다양해질수록 트래픽 부하가 폭발적으로 증가할 것으로 예상되며 트래픽 부하에 따른 병목현상이 발생할 가능성이 여전히 존재한다. 본 논문에서는 인공 신경망 알고리즘 RNN을 활용하여 트래픽을 예측하고 예측 결과를 기반으로 네트워크 슬라이스의 자원을 선제적으로 조절하는 기계학습 기반 네트워크 슬라이싱 자원 예약 기법을 제안한다.