기계학습은 인공지능(AI, Artificial Intelligence)의 일종으로 다른 인공지능 알고리즘이 정해진 규칙을 기반으로 주어진 임무(Task)를 해결하는 것과는 달리, 기계학습은 수집된 Data를 기반으로 최적의 솔루션을 학습한 후 미래의 값들을 예측하거나 해석하는 방법을 사용하고 있다. 더욱이 인터넷을 통한 연결성의 확대와 컴퓨터의 연산능력 발전으로 가능하게 된 Big-Data를 기반으로 하고 있어 이전의 인공지능 알고리즘에 비해 월등한 성능을 보여주고 있다. 그러나 기계학습 알고리즘이 Data를 학습할 때 학습 결과를 사람이 해석하기에 너무 복잡하여 사람이 그 내부 구조를 이해하는 것은 사실상 불가능하고, 이에 따라 학습된 기계학습 모델의 단점 또는 한계 등을 알지 못하는 문제가 있다. 본 연구에서는 이러한 블랙박스화된 기계학습 알고리즘의 특성을 이해하기 위해, 기계학습 알고리즘이 특정 입력에 대한 결과를 예측할 때 어떤 입력들로 부터 영향을 많이 받는지 그리고 어떤 입력으로부터 영향을 적게 받는지를 알아보는 방법을 소개하고 기존 연구의 단점을 개선하기 위한 방법을 제시한다.
본 연구는 운영 조건이 달라짐에 따라 회전수가 변하는 기기의 정상적 가동 여부와 고장 종류를 판별하기 위한 인공지능 알고리즘의 적용을 다루고 있다. 회전수가 변하는 장비로부터 계측된 상태 모니터링 센서의 신호는 비정상(non-stationary)적 특성이 있으므로, 상태 신호의 한계치가 고장 판별의 기준이 되기 어렵다는 점을 해결하고자 하였다. 정상 가동 여부는 이상 감지에 효율적인 오토인코더 및 기계학습 알고리즘을 적용하였으며, 고장 종류 판별에는 기계학습법과 합성곱 기반의 심층학습 방법을 적용하였다. 변하는 회전수와 연계된 주파수의 비정상적 시계열도 적절한 고장 특징 (Feature)로 대변될 수 있도록 시간 및 주파수 영역에서 특징 벡터를 구성할 수 있음을 예제로 설명하였다. 차원 축소 및 카이 제곱 기법을 적용하여 최적의 특징 벡터를 추출하여 기계학습의 분류 알고리즘이 비정상적 회전 신호를 가진 장비의 고장 예측에 활용될 수 있음을 보였다. 이 과정에서 k-NN(k-Nearest Neighbor), SVM(Support Vector Machine), Random Forest의 기계학습 알고리즘을 적용하였다. 또한 시계열 기반의 오토인코더 및 CNN (Convolution Neural Network) 적용하여 이상 감지와 고장진단을 수행한 결과를 비교하여 제시하였다.
학습 성과를 예측하거나 학습 경로를 최적화하는 연구 분야에서 기계학습과 같은 인공지능 기술의 사용이 점차 증가하면서 교육 분야의 인공지능 활용은 점차 많은 진전을 보이고 있다. 이러한 연구는 점차 심층학습과 강화학습과 같은 좀 더 고도화된 인공지능 방법으로 진화하고 있다. 본 연구는 학습자의 과거 학습 성과-이력 데이터를 기반으로 미래의 학습 성과를 예측하는 방법을 개선하는 것이다. 따라서 예측 성능을 높이기 위해 Markov Chain 방법을 응용한 조건부 확률을 제안한다. 이 방법은 기계학습에 의한 분류 예측에 추가하여 학습자가 학습 이력 데이터를 분류 예측에 추가함으로써 분류기의 예측 성능을 향상 시키기 위해 사용된다. 제안 방법의 효과를 확인하기 위해서 실증 데이터인 '교구 기반의 유아 교육 학습 성과 데이터'를 활용하여 기존의 분류 알고리즘과 제안 방법에 의한 분류 성능 지표를 비교하는 실험을 수행하였다. 실험 결과, 분류 알고리즘만 단독 사용한 사례보다 제안 방법에 의한 사례에서 더 높은 성능 지표를 산출한다는 것을 확인할 수 있었다.
최근 에너지 부족 문제 및 환경 문제의 해결수단으로 스마트 그리드가 많은 주목을 받고 있다. 스마트 그리드 기술은 에너지를 효율적으로 사용하는 데 도움을 주며, 이를 위해서는 더욱 정확한 전력수요 예측이 필요하다. 다양한 기계학습 기법 기반의 전력수요 예측 모델은 좋은 예측 성능을 보이지만 입력 변수의 개수가 증가할수록 처리해야 하는 데이터의 양이 기하급수적으로 증가한다는 단점이 존재한다. 또한, 불필요한 데이터를 입력 변수로 선정할 경우에는 모델의 정확도가 저하될 수도 있다. 이러한 문제를 해결하기 위해 다양한 특징 선택 기법들이 제안되었지만, 기존의 특징 선택 기법은 모델의 성능을 고려하지 않았기 때문에 실제 적용 시 오히려 모델의 성능이 저하될 수도 있다. 이에 본 논문은 유전 알고리즘을 기반으로 한 특징 선택 기법을 제안한다. 유전 알고리즘을 통해 각 모델에 맞는 최적의 입력 변수를 선택함으로써 빠른 학습 속도와 높은 정확도를 기대할 수 있다.
IoT 시대가 도래함에 따라 실시간으로 대규모 데이터가 발생하고 있으며 이를 효율적으로 처리하고 활용하기 위한 분산 처리 및 기계 학습에 대한 관심이 높아지고 있다. 아파치 스파크는 RDD 기반의 인 메모리 처리 방식을 지원하는 분산 처리 플랫폼으로 다양한 기계 학습 라이브러리와의 연동을 지원하여 최근 차세대 빅 데이터 분석 엔진으로 주목받고 있다. 본 논문에서는 아파치 스파크 기반 기계 학습 라이브러리 성능 비교를 통해 아파치 스파크와 연동 가능한 기계 학습라이브러리인 MLlib와 아파치 머하웃, SparkR의 데이터 처리 성능을 비교한다. 이를 위해, 대표적인 기계 학습 알고리즘인 나이브 베이즈 알고리즘을 사용했으며 학습 시간 및 예측 시간을 비교하여 아파치 스파크 기반에서 실시간 데이터 처리에 적합한 기계 학습 라이브러리를 확인한다.
최근 기계학습기반 빅데이터 분석이 많은 주목을 받으며 축산분야에도 다양한 기계학습 방안들이 적용되고 있다. 많은 양의 생체데이터와 환경데이터에 기계학습기법을 적용하여 분석함으로써 이전에는 발견하지 못했던 새로운 사실들을 밝혀낼 수 있다. 본 연구에서는 실험돈사에서 수집된 데이터를 기반으로 비육돈의 비율일당증체를 예측하는 방안에 대해서 다루었다. 비율일당증체 예측을 위해서 매일 측정된 온도/습도/이산화탄소/풍속의 일평균/일최소/일최대 데이터(환경데이터)과 비율일당증체(생체데이터)를 이용하였고, 트리기반 알고리즘을 사용하여 비율일당증체 예측수식을 도출하였다. 이를 통해 평균 온도가 비율일당증체에 가장 큰 영향을 미치는 요소인 것을 보였다. 본 연구의 결과는 각 양돈농가에서 비육돈의 성장을 예측하는데 유용하게 활용될 수 있을 것이다.
본고에서는 u-Office 서비스를 실현하기 위하여 이동 단말 기기로부터 수신한 사용자의 시간 및 위치 이동 정보를 이용해서 사용자에게 유용한 서비스를 제공하는 데 필요한 사용자 맞춤형 서비스 제공 통합 프레임워크 및 추론 기술 알고리즘에 대해 기술하고자 한다. 사용자 맞춤형 서비스제공 통합 프레임워크는 사용자 이동단말기 및 시간 및 이동 데이터를 저장하는 AP, AP의 데이터를 수집하는 데이터베이스, 사용자 이동 단말 어플리케이션 등으로 구성되어있으며, 사용자의 시간 및 위치 정보를 학습하여 이동 경로를 예측하고 유용한 서비스를 제공하기 위해 사용된 기계학습 기반 추론 알고리즘에 대하여 알아본다. u-Office 서비스를 실현하기 위하여 실제로 캠퍼스 및 교실범위로 구현한 사용자 패턴기반 맞춤형 서비스 프레임워크에 대해 알아보고 제공 가능한 서비스에 대하여 논의한다.
본 연구는 고압 다이캐스팅 공정에서 제품 결함을 사전에 예측하기 위한 기계 학습 기반의 공정 관리 모델 개발에 관한 연구이다. 모델은 이전 사이클에서의 온도를 입력받고, 사이클에 걸쳐서 나타나는 특징을 인식하여 다음 사이클의 결함 발생 여부를 예측한다. 기어 박스 형상에 대하여 제안된 알고리즘을 적용하여, 3 사이클의 정보를 통해서 98 .9%의 정확도와 96.8 %의 재현율로 제품 수축 결함을 사전에 예측하였다.
최근 초저지연, 초고속, 초연결 네트워크를 요구하는 기술들이 급속하게 발전하고 있다. 기존 4G 네트워크는 위 요구사항을 만족할 수 없었기 때문에 5G 네트워크가 등장했다. 5G 네트워크는 네트워크 가상화 기반 네트워크 슬라이싱을 통해 각각의 서비스 마다 독립적인 네트워크 환경을 제공한다. 그러나 네트워크에 참여하는 서비스가 다양해질수록 트래픽 부하가 폭발적으로 증가할 것으로 예상되며 트래픽 부하에 따른 병목현상이 발생할 가능성이 여전히 존재한다. 본 논문에서는 인공 신경망 알고리즘 RNN을 활용하여 트래픽을 예측하고 예측 결과를 기반으로 네트워크 슬라이스의 자원을 선제적으로 조절하는 기계학습 기반 네트워크 슬라이싱 자원 예약 기법을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.