• 제목/요약/키워드: 기계학습알고리즘

검색결과 782건 처리시간 0.025초

불균형 데이터 학습을 위한 지지벡터기계 알고리즘 (Support Vector Machine Algorithm for Imbalanced Data Learning)

  • 김광성;황두성
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권7호
    • /
    • pp.11-17
    • /
    • 2010
  • 본 논문에서는 클래스 불균형 학습을 위한 이차 최적화 문제의 해를 구하는 개선된 SMO 학습 알고리즘을 제안한다. 클래스에 서로 다른 정규화 값이 부여되는 지지벡터기계의 최적화 문제의 구현에 SMO 알고리즘이 적합하며, 제안된 알고리즘은 서로 다른 클래스에서 선택된 두 라그랑지 변수의 현재 해를 구하는 학습 단계를 반복한다. 제안된 학습 알고리즘은 UCI 벤치마킹 문제에서 테스트되어 클래스 불균형 분포를 반영하는 g-mean 평가를 이용한 일반화 성능이 SMO 알고리즘과 비교되었다. 실험 결과에서 제안된 알고리즘은 SMO에 비해 적은 클래스 데이터의 예측율을 높이고 학습시간을 단축시킬 수 있다.

실시간 데이터 처리를 위한 아파치 스파크 기반 기계 학습 라이브러리 성능 비교 (A Performance Comparison of Machine Learning Library based on Apache Spark for Real-time Data Processing)

  • 송준석;김상영;송병후;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2017년도 제55차 동계학술대회논문집 25권1호
    • /
    • pp.15-16
    • /
    • 2017
  • IoT 시대가 도래함에 따라 실시간으로 대규모 데이터가 발생하고 있으며 이를 효율적으로 처리하고 활용하기 위한 분산 처리 및 기계 학습에 대한 관심이 높아지고 있다. 아파치 스파크는 RDD 기반의 인 메모리 처리 방식을 지원하는 분산 처리 플랫폼으로 다양한 기계 학습 라이브러리와의 연동을 지원하여 최근 차세대 빅 데이터 분석 엔진으로 주목받고 있다. 본 논문에서는 아파치 스파크 기반 기계 학습 라이브러리 성능 비교를 통해 아파치 스파크와 연동 가능한 기계 학습라이브러리인 MLlib와 아파치 머하웃, SparkR의 데이터 처리 성능을 비교한다. 이를 위해, 대표적인 기계 학습 알고리즘인 나이브 베이즈 알고리즘을 사용했으며 학습 시간 및 예측 시간을 비교하여 아파치 스파크 기반에서 실시간 데이터 처리에 적합한 기계 학습 라이브러리를 확인한다.

  • PDF

기계학습 기반의 실시간 이미지 인식 알고리즘의 성능 (Performance of Real-time Image Recognition Algorithm Based on Machine Learning)

  • 선영규;황유민;홍승관;김진영
    • 한국위성정보통신학회논문지
    • /
    • 제12권3호
    • /
    • pp.69-73
    • /
    • 2017
  • 본 논문에서는 기계학습 기반의 실시간 이미지 인식 알고리즘을 개발하고 개발한 알고리즘의 성능을 테스트 하였다. 실시간 이미지 인식 알고리즘은 기계 학습된 이미지 데이터를 바탕으로 실시간으로 입력되는 이미지를 인식한다. 개발한 실시간 이미지 인식 알고리즘의 성능을 테스트하기 위해 자율주행 자동차 분야에 적용해보았고 이를 통해 개발한 실시간 이미지 인식 알고리즘의 성능을 확인해보았다.

교육데이터마이닝을 이용한 학부모 학교 만족도 예측에 관한 연구 (A Study on Prediction of Parent School Satisfaction Using Educational Data Mining)

  • 양영보;유헌창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.244-246
    • /
    • 2018
  • 학습관리시스템의 도입으로 학습자들은 다양한 형태로 학습하게 되고 데이터를 남기게 된다. 교육데이터마이닝은 다양한 형태로 기록되는 교육 데이터를 분석해서 유의미한 정보를 찾아 내는 방법이다. 교육데이터마이님을 활용하면 학생 개인의 학습성과 향상에 도움을 주거나 학습성과 예측 결과를 참고하여 부족한 부분을 지원해 줄 수도 있다. 기존 연구에서는 학습자의 행동 영역 특징이 학습성과에 영향을 끼친다는 것을 검증하기 위하여 나이브 베이즈, 의사결정트리, 신경망 기계학습알고리즘으로 데이터를 분석했다. 따라서 본 연구에서는 기존 연구를 확장하여 학습자의 행동 영역 특징이 학부모 학교 만족도에 영향을 끼치는지 여부를 확인하는 실험을 수행했으며 kNN, 의사결정트리, SVM 기계학습 알고리즘으로 데이터를 분석하였다. 분석결과 학습자의 행동 영역 특정이 학부모 학교 만족도에 영향을 미치는 것을 확인했다.

3축 가속도 센서 기반 인간 행동 인식을 위한 기계학습 분석

  • 이송미;조희련;윤상민
    • 정보와 통신
    • /
    • 제33권10호
    • /
    • pp.65-70
    • /
    • 2016
  • 최근 스마트폰의 이용 사례가 증가함에 따라, 스마트폰에 내장되어 있는 다양한 센서를 이용하여 인간의 행동을 인식하기 위한 연구가 많은 각광을 받고 있다. 본고에서는 인간의 기본적인 행동 중에 앉기, 걷기, 달리기 등의 행동 특성을 스마트폰에 내장되어 있는 3축 가속도 센서를 통하여 분석하고 인간의 기본적 행동을 자동으로 인식하기 위한 방법에 대하여 비교 분석하는 것을 목적으로 한다. 구체적으로는 스마트폰에 내장되어 있는 3차원 가속도 센서로부터 추출된 데이터를 시간축에서 샘플링하여 인간의 행동을 인식하기 위한 기댓값 최대화 알고리즘, 랜덤 포레스트, 딥러닝 기반의 기계학습 방법을 비교하여 각 기계학습 알고리즘의 장단점을 분석한다.

소프트웨어 비용산정을 위한 면역 알고리즘 기반의 서포트 벡터 회귀 (Support Vector Regression based on Immune Algorithm for Software Cost Estimation)

  • 권기태;이준길
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권7호
    • /
    • pp.17-24
    • /
    • 2009
  • 정보시스템에 대한 이용이 늘어남에 따라 소프트웨어 개발 요구와 개발 비용이 증가하게 되었다. 기존에는 통계적 알고리즘 기반의 회귀분석을 이용하여 소프트웨어 개발비용을 산정하였으나 오늘날은 기계학습 방법들이 많이 연구되고 있다. 본 논문에서는 기계학습 기술의 하나인 SVR를 사용하여 소프트웨어 비용을 산정하였고, 이 때 SVR에서 사용하는 파라미터들의 최적 조합을 면역계의 동작원리를 적용한 면역 알고리즘을 적용하여 최적 조합을 찾았다. 소프트웨어 비용산정을 위해 세대수, 기억세포수, 대립유전자수를 변경해 가면서 면역 알고리즘 기반의 SVR을 적용하였고, 그 실험 결과를 기존 연구된 다른 기계학습 방법과 비교 분석하였다.

기계학습 및 기본 알고리즘 연구 (A Study on Machine Learning and Basic Algorithms)

  • 김동현;이태호;이병준;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제58차 하계학술대회논문집 26권2호
    • /
    • pp.35-36
    • /
    • 2018
  • 본 논문에서는 기계학습 및 기계학습 기법 중에서도 Markov Decision Process (MDP)를 기반으로 하는 강화학습에 대해 알아보고자 한다. 강화학습은 기계학습의 일종으로 주어진 환경 안에서 의사결정자(Agent)는 현재의 상태를 인식하고 가능한 행동 집합 중에서 보상을 극대화할 수 있는 행동을 선택하는 방법이다. 일반적인 기계학습과는 달리 강화학습은 학습에 필요한 사전 지식을 요구하지 않기 때문에 불명확한 환경 속에서도 반복 학습이 가능하다. 본 연구에서는 일반적인 강화학습 및 강화학습 중에서 가장 많이 사용되고 있는 Q-learning 에 대해 간략히 설명한다.

  • PDF

나이브베이즈 문서분류시스템을 위한 선택적샘플링 기반 EM 가속 알고리즘 (Accelerating the EM Algorithm through Selective Sampling for Naive Bayes Text Classifier)

  • 장재영;김한준
    • 정보처리학회논문지D
    • /
    • 제13D권3호
    • /
    • pp.369-376
    • /
    • 2006
  • 본 논문은 온라인 전자문서환경에서 전통적 베이지안 통계기반 문서분류시스템의 분류성능을 개선하기 위해 EM(Expectation Maximization) 가속 알고리즘을 접목한 방법을 제안한다. 기계학습 기반의 문서분류시스템의 중요한 문제 중의 하나는 양질의 학습문서를 확보하는 것이다. EM 알고리즘은 소량의 학습문서집합으로 베이지안 문서분류 알고리즘의 성능을 높이는데 활용된다. 그러나 EM 알고리즘은 최적화 과정에서 느린 수렴성과 성능 저하 현상을 나타내는데, EM 알고리즘의 기본 가정을 따르지 않는 온라인 전자문서환경에서 특히 그러하다. 제안 기법의 주요 아이디어는 전통적 EM 알고리즘을 개선하기 위해 불확정성도 기반 선택적 샘플링 기법을 활용한 것이다. 성능평가를 위해 Reuter-21578 문서집합을 사용하여, 제안 알고리즘의 빠른 수렴성을 보이고 전통적 베이지안 알고리즘의 분류 정확성을 향상시켰음을 보인다.

기계학습 기반 유체 시뮬레이션의 비말 검출 알고리즘 (Splash Detection Algorithm for Machine Learning-based Fluid Simulation)

  • 김재형 ;성수경 ;신병석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.427-429
    • /
    • 2023
  • 인공지능 기술의 발전에 따라 유체 시뮬레이션 분야에서는 복잡한 액체의 흐름을 모사하기 위해 기계학습 기술이 많이 활용되고 있다. 이러한 시뮬레이션에서 성능 향상의 가장 중요한 요소는 학습 데이터다. 이 논문에서는 기계학습 기반 유체 시뮬레이션의 학습 데이터 생성 단계 중 기존의 방법보다 효율적으로 비말(splash) 탐색하는 방법을 제안한다. 기존 방법에서는 CPU 환경에서 큐(queue)를 이용하는 너비우선탐색(breadth first search) 기법을 사용하기 때문에 처리속도가 느리다. 반면에 제안하는 기법에서는 배열로 되어 있는 해시 테이블(hash table)을 이용해 충돌 문제를 해결해 GPU 환경에서 비말을 신속하게 검출하도록 하기 때문에 빠른 학습 데이터 생성이 가능하도록 했다. 이 알고리즘의 유효성을 확인하기 위하여 정확성과 수행시간을 확인하였다.