• Title/Summary/Keyword: 기계학습법

Search Result 173, Processing Time 0.027 seconds

Investigation on the Key Parameters for the Strengthening Behavior of Biopolymer-based Soil Treatment (BPST) Technology (바이오폴리머-흙 처리(BPST) 기술의 강도 발현 거동에 대한 주요 영향인자 분석에 관한 연구)

  • Lee, Hae-Jin;Cho, Gye-Chum;Chang, Ilhan
    • Land and Housing Review
    • /
    • v.12 no.3
    • /
    • pp.109-119
    • /
    • 2021
  • Global warming caused by greenhouse gas emissions has rapidly increased abnormal climate events and geotechnical engineering hazards in terms of their size and frequency accordingly. Biopolymer-based soil treatment (BPST) in geotechnical engineering has been implemented in recent years as an alternative to reducing carbon footprint. Furthermore, thermo-gelating biopolymers, including agar gum, gellan gum, and xanthan gum, are known to strengthen soils noticeably. However, an explicitly detailed evaluation of the correlation between the factors, that have a significant influence on the strengthening behavior of BPST, has not been explored yet. In this study, machine learning regression analysis was performed using the UCS (unconfined compressive strength) data for BPST tested in the laboratory to evaluate the factors influencing the strengthening behavior of gellan gum-treated soil mixtures. General linear regression, Ridge, and Lasso were used as linear regression methods; the key factors influencing the behavior of BPST were determined by RMSE (root mean squared error) and regression coefficient values. The results of the analysis showed that the concentration of biopolymer and the content of clay have the most significant influence on the strength of BPST.

Character Motion Control by Using Limited Sensors and Animation Data (제한된 모션 센서와 애니메이션 데이터를 이용한 캐릭터 동작 제어)

  • Bae, Tae Sung;Lee, Eun Ji;Kim, Ha Eun;Park, Minji;Choi, Myung Geol
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.85-92
    • /
    • 2019
  • A 3D virtual character playing a role in a digital story-telling has a unique style in its appearance and motion. Because the style reflects the unique personality of the character, it is very important to preserve the style and keep its consistency. However, when the character's motion is directly controlled by a user's motion who is wearing motion sensors, the unique style can be discarded. We present a novel character motion control method that uses only a small amount of animation data created only for the character to preserve the style of the character motion. Instead of machine learning approaches requiring a large amount of training data, we suggest a search-based method, which directly searches the most similar character pose from the animation data to the current user's pose. To show the usability of our method, we conducted our experiments with a character model and its animation data created by an expert designer for a virtual reality game. To prove that our method preserves well the original motion style of the character, we compared our result with the result obtained by using general human motion capture data. In addition, to show the scalability of our method, we presented experimental results with different numbers of motion sensors.

Analysis of groundwater withdrawal impact in the middle mountainous area of Pyoseon Watershed in Jeju Island using LSTM (LSTM을 활용한 제주도 표선유역 중산간지역의 지하수 취수영향 분석)

  • Shin, Mun-Ju;Moon, Soo-Hyoung;Moon, Duk-Chul;Koh, Hyuk-Joon;Kang, Kyung Goo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.267-267
    • /
    • 2021
  • 제주도는 화산섬의 지질특성상 강수의 지표침투성이 높아 지표수의 개발이용여건이 취약한 관계로 용수의 대부분을 지하수에 의존하고 있다. 따라서 지하수의 보전관리는 매우 중요한 사항이며 특히 지하수의 안정적인 이용을 위해서는 지하수 취수가 주변지역 지하수위에 미치는 영향 분석이 반드시 필요하다. 본 연구는 딥러닝 알고리즘인 Long Short-Term Memory(LSTM)를 활용하여 제주도 남동쪽 표선유역 중산간지역에 위치한 2개 지하수위 관측정을 대상으로 지하수 취수영향을 분석하였다. 입력자료로써 인근 2개 강우관측소의 일단위 강수량자료와 인근 6개 취수정의 지하수 취수량자료 및 연구대상 관측정의 지하수위 자료(2001. 2. 11. ~ 2019. 10. 31.)를 사용하였다. 지하수위 변동특성을 최대한 반영하기 위해 LSTM의 예측일수를 1일로 설정하였다. 보정 및 검증 기간을 사용하여 매개변수의 과적합을 방지하였으며, 테스트 기간을 사용하여 LSTM의 예측성능을 평가하였다. 평가지수로써 Nash-Sutcliffe Efficiency(NSE)와 평균제곱근오차(RMSE)를 사용하였다. 그리고 지하수 취수가 주변 지하수위 변동에 미치는 영향을 분석하기 위해 취수량을 최대취수량인 2,300 m3/일, 최대취수량의 2/3인 1,533 m3/일 및 0 m3/일로 설정하여 모의하였다. 모의결과, 2개 감시정의 보정, 검증 및 예측기간에 대한 NSE는 최대 0.999, 최소 0.976의 범위를 보였으며, RMSE는 최대 0.494 m, 최소 0.084 m를 보여 LSTM은 우수한 예측성능을 나타내었다. 이것은 LSTM이 지하수위 변동특성을 적절히 학습하였다는 것을 의미하며 따라서 추정된 매개변수를 활용하여 지하수 취수영향을 모의 및 분석하였다. 그 결과, 지하수위 하강량은 최대 0.38 m 였으며 이것은 대상지점에 대한 취수량은 지하수위 하강에 거의 영향을 주지 않는다는 것을 의미한다. 또한 취수량과 지하수위 하강량과의 관계는 한 개 관측정에 대해 선형적인 관계를 보인 반면 나머지 한 개 관측정에 대해서는 비선형적인 관계를 나타내는 것을 확인하였다. 따라서 LSTM 알고리즘을 활용하여 제주도 표선유역 중산간지역의 지하수위 변동특성을 분석할 수 있다.

  • PDF

Apartment Price Prediction Using Deep Learning and Machine Learning (딥러닝과 머신러닝을 이용한 아파트 실거래가 예측)

  • Hakhyun Kim;Hwankyu Yoo;Hayoung Oh
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.2
    • /
    • pp.59-76
    • /
    • 2023
  • Since the COVID-19 era, the rise in apartment prices has been unconventional. In this uncertain real estate market, price prediction research is very important. In this paper, a model is created to predict the actual transaction price of future apartments after building a vast data set of 870,000 from 2015 to 2020 through data collection and crawling on various real estate sites and collecting as many variables as possible. This study first solved the multicollinearity problem by removing and combining variables. After that, a total of five variable selection algorithms were used to extract meaningful independent variables, such as Forward Selection, Backward Elimination, Stepwise Selection, L1 Regulation, and Principal Component Analysis(PCA). In addition, a total of four machine learning and deep learning algorithms were used for deep neural network(DNN), XGBoost, CatBoost, and Linear Regression to learn the model after hyperparameter optimization and compare predictive power between models. In the additional experiment, the experiment was conducted while changing the number of nodes and layers of the DNN to find the most appropriate number of nodes and layers. In conclusion, as a model with the best performance, the actual transaction price of apartments in 2021 was predicted and compared with the actual data in 2021. Through this, I am confident that machine learning and deep learning will help investors make the right decisions when purchasing homes in various economic situations.

Prediction of KOSPI using Data Editing Techniques and Case-based Reasoning (자료편집기법과 사례기반추론을 이용한 한국종합주가지수 예측)

  • Kim, Kyoung-Jae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.287-295
    • /
    • 2007
  • This paper proposes a novel data editing techniques with genetic algorithm (GA) in case-based reasoning (CBR) for the prediction of Korea Stock Price Index (KOSPI). CBR has been widely used in various areas because of its convenience and strength in compelax problem solving. Nonetheless, compared to other machine teaming techniques, CBR has been criticized because of its low prediction accuracy. Generally, in order to obtain successful results from CBR, effective retrieval of useful prior cases for the given problem is essential. However. designing a good matching and retrieval mechanism for CBR system is still a controversial research issue. In this paper, the GA optimizes simultaneously feature weights and a selection task for relevant instances for achieving good matching and retrieval in a CBR system. This study applies the proposed model to stock market analysis. Experimental results show that the GA approach is a promising method for data editing in CBR.

  • PDF

The Optimization of Fuzzy Prototype Classifier by using Differential Evolutionary Algorithm (차분 진화 알고리즘을 이용한 Fuzzy Prototype Classifier 최적화)

  • Ahn, Tae-Chon;Roh, Seok-Beom;Kim, Yong Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.161-165
    • /
    • 2014
  • In this paper, we proposed the fuzzy prototype pattern classifier. In the proposed classifier, each prototype is defined to describe the related sub-space and the weight value is assigned to the prototype. The weight value assigned to the prototype leads to the change of the boundary surface. In order to define the prototypes, we use Fuzzy C-Means Clustering which is the one of fuzzy clustering methods. In order to optimize the weight values assigned to the prototypes, we use the Differential Evolutionary Algorithm. We use Linear Discriminant Analysis to estimate the coefficients of the polynomial which is the structure of the consequent part of a fuzzy rule. Finally, in order to evaluate the classification ability of the proposed pattern classifier, the machine learning data sets are used.

Sentiment Analysis and Opinion Mining: literature analysis during 2007-2016 (감정분석과 오피니언 마이닝: 2007-2016)

  • Li, Jiapei;Li, Xiaomeng;Xiam, Xiam;Kang, Sun-kyung;Lee, Hyun Chang;Shin, Seong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.160-161
    • /
    • 2017
  • Sentiment analysis and opinion mining is the field of study that analyzes people's opinions, sentiments, evaluations, attitudes, and emotions from written language Opinion mining and sentiment analysis(OMSA) as a research discipline has emerged during last 15 years and provides a methodology to computationally process the unstructured data mainly to extract opinions and identify their sentiments. The relatively new but fast growing research discipline has changed a lot during these years. This paper presents a scientometric analysis of research work done on OMSA during 2007-2016. For the literature analysis, research publications indexed in Web of Science (WoS) database are used as input data. The publication data is analyzed computationally to identify year-wise publication pattern, rate of growth of publications, research areas. More detailed manual analysis of the data is also performed to identify popular approaches (machine learning and lexcon-based) used in these publications, levels (documents, sentences or aspect-level) of sentiment analysis work done and major application areass of OMSA.

  • PDF

A Study on Effective Teaching Method of Inventive Principles (효과적인 발명원리 교수법에 관한 연구)

  • Kim, Eun-gyung
    • Journal of Practical Engineering Education
    • /
    • v.8 no.1
    • /
    • pp.15-21
    • /
    • 2016
  • TRIZ, the theory of inventive problem solving, is widely used not only in traditional engineering fields such as mechanical, electrical, and electronic engineering but also in IT field and generated good results. Therefore, recently many universities have opened TRIZ as a regular course. Especially, 40 inventive principles of TRIZ are not only creative thinking tools that beginners can learn relatively easily but also very effective problem solving tools, but it is not that easy to utilize it properly for solving real problems as you think. In order to use inventive principles as powerful tools for creative problem solving, it is important to educate learners to use it repeatedly through stimulating their interest about the inventive principles. So, in this paper, we introduce various inventive principles hidden in the cards that can be easily accessible in everyday life, and propose how to educate learners to evoke their interest in the inventive principles through making cards by utilizing the inventive principles.

Estimation of Net Community Production Based on O2/Ar Measurements (O2/Ar 관측에 기반한 순군집생산량 추정 연구 동향)

  • HAHM, DOSHIK;LEE, INHEE
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.1
    • /
    • pp.49-62
    • /
    • 2018
  • Net community production (NCP), defined as the difference between net primary production and respiration of heterotrophs, has been used as a measure of oceanic biological carbon pump. This paper summarizes the theoretical background and experimental methods for the estimation of NCP based on $O_2/Ar$ measurements ($O_2/Ar-NCP$). The high frequency measurements of $O_2/Ar-NCP$ (<1 min) is a significant enhancement over the conventional measures of biological pump, such as new production and export production. This paper also introduces some of important works as to the comparison between $O_2/Ar-NCP$ and other measures of biological pump, the distributions of $O_2/Ar-NCP$ in the oceans, and the correlation of $O_2/Ar-NCP$ with various oceanic parameters, including community structures.

Prediction of Drug Side Effects Based on Drug-Related Information (약물 관련 정보를 이용한 약물 부작용 예측)

  • Seo, Sukyung;Lee, Taekeon;Yoon, Youngmi
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.12
    • /
    • pp.21-28
    • /
    • 2019
  • Side effects of drugs mean harmful and unintended effects resulting from drugs used to prevent, diagnose, or treat diseases. These side effects can lead to patients' death and are the main causes of drug developmental failures. Thus, various methods have been tried to identify side effects. These can be divided into biological and systems biology approaches. In this study, we use systems biology approach and focus on using various phenotypic information in addition to the chemical structure and target proteins. First, we collect datasets that are used in this study, and calculate similarities individually. Second, we generate a set of features using the similarities for each drug-side effect pair. Finally, we confirm the results by AUC(Area Under the ROC Curve), and showed the significance of this study through a comparison experiment.