• Title/Summary/Keyword: 기계적 합금화법

Search Result 82, Processing Time 0.024 seconds

Synthesis and Characterization of Soft Magnetic Composite Powders in Fe2O3-Zn System by Mechanical Alloying (기계적 합금화법에 의한 Fe2O3-Zn계 연자성 복합분말의 제조 및 특성평가)

  • Lee, Chung-Hyo
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.74-80
    • /
    • 2020
  • Synthesis of composite powders for the Fe2O3-Zn system by mechanical alloying (MA) has been investigated at room temperature. Optimal milling and heat treatment conditions to obtain soft magnetic composite with fine microstructure were investigated by X-ray diffraction, differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM) measurement. It is found that α-Fe/ZnO composite powders in which ZnO is dispersed in α-Fe matrix can be obtained by MA of Fe2O3 with Zn for 4 hours. The change in magnetization and coercivity also reflects the details of the solid-state reduction process of hematite by pure metal of Zn during MA. Densification of the MA powders was performed in a spark plasma sintering (SPS) machine at 900 ~ 1,000 ℃ under 60 MPa. Shrinkage change after SPS of sample MA'ed for 5 hrs was significant above 300 ℃ and gradually increased with increasing temperature up to 800 ℃. X-ray diffraction results show that the average grain size of α-Fe in the α-Fe/ZnO composite sintered at 900 ℃ is in the range of 110 nm.

Phase Transformations and Oxidation Properties of Fe$_{0.98}$Mn$_{0.02}$Si$_2$ Processed by Mechanical Alloying (기계적 합금화법에 의해 제조된 Fe$_{0.98}$Mn$_{0.02}$Si$_2$의 상변태와 산화특성)

  • 심웅식;이동복;어순철
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.200-205
    • /
    • 2003
  • Thermoelectric p-type $Fe_{0.98}$ $Mn_{ 0.02}$$Si_2$ bulk specimens have been produced by mechanical alloying and consolidation by vacuum hot pressing. The subsequent isothermal annealing was not able to fully transform the mestastable as -milled powders into the $\beta$ $-FeSi_2$ phase, so that the obtained matrix consisted of not only thermoelectric semiconducting $\beta$-FeSi$_2$ but also some residual, untransformed metallic $\alpha$ $- Fe_2$$Si_{ 5}$ and $\varepsilon$-FeSi mixtures. Interestingly, $\beta$ - $FeSi_2$ was more easily obtained in the low density specimen when compared to the high density specimen. The oxidation at 700 and $800^{\circ}C$ in air led to the phase transformation of the above described iron - silicides and the formation of a thin silica surface layer.

Preparation of Hard Magnetic $Sm_2Fe_{17}N_x$ Compound by Mechanical Alloying (기계적 합금화법에 의한 영구자석용 $Sm_2Fe_{17}N_x$ 화합물의 제조)

  • 이충효;김명근;석명진;김지순;윤석길;권영순
    • Journal of Powder Materials
    • /
    • v.8 no.1
    • /
    • pp.55-60
    • /
    • 2001
  • Mechanical alloying technique was applied to prepare hard magnetic $Sm_2Fe_{17}N_x$ compound powders. Staring from pure Fe and Sm powders, the formation process of hard magnetic $Sm_2Fe_{17}N_x$ phase by mechanical alloying and subsequent solid state reaction was studied. As milled powders were found to consist of Sm-Fe amorphous and $\alpha$-Fe phases in all compositions of $Sm_xFe_{100-x}$(x = 11, 13, 15, 17). The effects of starting composition on the formation of $Sm_2Fe_{17}$ intermetallic compound was investigated by heat treatment of mechanically-alloyed powders. When Sm content was 15 at.%, heat-treated powders consisted of nearly $Sm_2Fe_{17}$ single phase. For preparation of hard magnetic $Sm_2Fe_{17}N_x$ powders, additional nitriding treatment was performed under $N_2$ gas flow at 45$0^{\circ}C$. The increase in the coercivity and remanence was proportional to the nitrogen content which increased drastically at first and then increased gradually as the nitriding time was extended to 3 hours.

  • PDF

Solid Solution Phenomena of Al+Al3Ti Alloy and Al+10wt.%Ti Alloy using Mechanical Alloying Process (기계적 합금화법에 의해 제조된 Al+Al3Ti합금 및 Al+10wt.%Ti합금의 고용현상)

  • Kim, Hye-Sung;Lee, Jung-Ill;Kim, Gyeung-Ho;Kum, Dong-Wha;Shur, Dong-Soo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.2
    • /
    • pp.121-129
    • /
    • 1996
  • The solubility of Ti in Al matrix was determined by X-ray diffraction method on two different mechanical alloying systems, i.e Al+$Al_3Ti$ and Al+Ti alloys. Starting powder compositions of two systems were chosen for final volume fraction of $Al_3Ti$ phase being 25%. The solubility of Ti in ${\alpha}$-Al was estimated by the lattice parameter measurement of Al. For Al+$Al_3Ti$ mixture, it appeared that some of $Al_3Ti$ particles decomposed during milling and maximum solubility of Ti in Al was about 0.99%. The majority of $Al_3Ti$ particles were dispersed uniformly in Al matrix, having approximate size of 100~200 nm. On the other hand, higher Ti solubility of 1.24 wt.% was found in Al+Ti system, with starting composition of Al+10 wt.%Ti. After 15 hours of milling, Ti phase was identified as 20 nm sized particles embedded in Al matrix. The annealing of mechanically alloyed powders from Al+$Al_3Ti$ and Al+10 wt.%Ti systems was followed in the temperature range of 200 to $600^{\circ}C$ to study thermal stability of supersaturated solution of Al(Ti). After annealing, the lattice parameter of Al reverted back to that of pure Al, and the peak intensity ratio of $Al_3Ti$/Al was increased more than the original value before annealing. These results suggest that Ti dissolve into alpha-Al solutions during milling, and by annealing, $Do_{22}-Al_3Ti$ phase forms from Al(Ti) solution.

  • PDF

The Fabrication of MggTi1-(10, 20 wt%)Ni Hydrogen Absorbing Alloys by Hydrogen Induced Mechanical Alloying and Evaluation of Hydrogenation Properties(Part II : Evaluation of Pressure-Composition-Isotherm Properties) (수소 가압형 기계적 합금화법을 이용한 MggTi1-(10, 20 Wt%)Ni 수소저장합금의 제조와 수소화 특성 (제 2보 : 압력-조성-등온 특성 평가))

  • Hong, Tae-Whan;Kim, Gyeong-Bum;Kim, Yeong-Jig
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.4
    • /
    • pp.270-278
    • /
    • 2002
  • Mg and Mg alloys are attractive hydrogen storage materials because of their lightweight and high absorption capacity. Their range of applications could be further extended if their hydrogenation properties and degradation behavior could be improved, The main emphasis of this study was to find an economic manufacturing method for Mg-Ti-Ni-H systems, and to investigate their hydrogenation properties, In order to examine hydrogenation behavior, a Sieverts type automatic pressure-composition-isotherm(PCI) apparatus was used and the experiments were performed at 423, 473, 523, 573, 623 and 673K. The results of thermogravimetric analysis(TGA) reveal that the absorbed hydrogen contents are around 2.5 wt% for ($Mg_9Ti_1$)-10 wt% Ni. With increased Ni content, the absorbed hydrogen content decreases to 1.7 wt%, whereas the dehydriding starting temperatures are lowered by some 70-100K. The results of PCI on ($Mg_9Ti_1$)-20 wt% Ni show that its hydrogen capacity is around 5.3 wt% and its reversible capacity and plateau pressure are also excellent at 523K and 573K. In addition, the reaction enthalpy, $\Delta$HD.plateau, is $30.6{\pm}5.7kJ/molH_2$.

Formation of Non-equilibrium Cu-Ta-Mo Alloy Powders by Mechanical Alloying (기계적 합금화법에 의한 비평형 Cu-Ta-Mo계 합금분말의 제조)

  • 이충효;이상진
    • Journal of Powder Materials
    • /
    • v.6 no.4
    • /
    • pp.314-319
    • /
    • 1999
  • The solid state reaction by mechanical alloying(MA) generally proceeds by lowering the free energy as the result of a chemical reaction at the interface between the two adjacent layers. However, Lee et $al.^{1-5)}$ reported that a mixture of Cu and Ta, the combination of which is characterized by a positive heat of mixing of +2kJ/mol, could be amorphized by mechanical alloying. This implies that there exists an up-hill process to raise the free energy of a mixture of pure Cu and la to that of an amorphous phase. It is our aim to investigate to what extent the MA is capable of producing a non-equilibrium phase with increasing the heat of mixing. The system chosen was the ternary $Cu_{30}Ta_{ 70-x}Mo_ x$ (x=35, 10). The mechanical alloying was carried out using a Fritsch P-5 planetary mill under Ar gas atmosphere. The MA powders were characterized by the X-ray diffraction with Cu-K $\alpha$ radiation, thermal analysis, electron diffraction and TEM micrographs. In the case of x=35, where pure Cu powders were mixed with equal amount of pure Ta and Mo powders, we revealed the formation of bcc solid solution after 150 h milling but its gradual decomposition by releasing fcc-Cu when milling time exceeded 200 h. However, an amorphous phase was clearly formed when the Mo content was lowered to x=10. It is believed that the amorphization of ternary $Cu_{30}Ta_{60}Mo_{10}$ powders is essentially identical to the solid state amorphization process in binary $Cu_{30}Ta_{70}$ powders.

  • PDF

Formation of Al3Ti From Mechanically Alloyed Hyper-Peritectic Al-Ti Powder (기계적 합금화법으로 제조된 과포정 Al-Ti 합금에서 Al3Ti 형성에 관한 연구)

  • Kim, Hye-Sung;Suhr, Dong-Soo;Kim, Gyeung-Ho;Kum, Dong-Wha
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 1996
  • Mechanical alloying is an effective process to finely distribute inert dispersoids in an Al-TM(TM is a transition metal) system. It has been considered that high melting point aluminides are formed by precipitation from supersaturated Al(Ti) powder. This analysis is based on the fact that much higher content of TM than the solubioity can be dissolved in alpha aluminum during the high energy ball milling. Thus, decomposition behavior of Ti in the Al(Ti) was considered very important. But it is confirmed that the higher portion of Ti than Al(Ti) solid solution is existed as nano-sized Ti particles in the MA powders by high energy ball nilling from the XRD spectrum and TEM analysis in this study. Therefore, the role of undissolved TM particles affect the formation of aluminides should be suitably considered. In this study, we present experimental observation on the formation of $Al_3Ti$ fron mechanical alloyed Al-Ti alloys in the hyperperitectic region. This study showed that, in the mechanically alloyed Al-20wt%Ti specimen, intermediate phase of cubic $Al_3Ti$ and tetragonal $Al_{24}Ti_8$ formed at $300{\sim}400^{\circ}C$ and $400{\sim}500^{\circ}C$, respectively, before the MA state reaches to equilibrium at higher temperatures. The formation behavior of $Ll_2-Al_3Ti$ is interpreted by interdiffusion of Al and Ti in solid state based on the fact that large amount of nano-sized Ti particles exist in the milled powder. Present analysis indicated undissolved Ti particles of nanosize should have played an important role initiation the formation of $Al_3Ti$ phase during annealing.

  • PDF

A Study on Microstructure of Vanadium-Aluminum Alloy by Mechanical Alloying (기계적합금화법(機械的合金化法)에 의(依)한 V-Al합금(合金)의 미세조직(微細組織) 변화(變化)에 관(關)한 연구(硏究))

  • Choi, Woon;Kim, Ha-Young;Nam, Seoung-Eui
    • Journal of Korea Foundry Society
    • /
    • v.11 no.6
    • /
    • pp.455-462
    • /
    • 1991
  • The formation of brittle intermetallic compound such as $VAl_3$ tends tp lower the toughness of V-Al alloys. Also, due to the high melting point of vanadium, it is difficult to make that alloy by previous ingot metallurgy method. To depress the technique has been adopted. The effect of particle size and milling time on the phase has been thoroughly studied. For mechanical alloying, SPEX mixed/mill has been used. The milling time and the composition of V and Al are varied to find the optimum condition of forming amorphous phase. The X-Ray Diffrection pattern, microstructure detection, microhandess test, experiments are carried out to analyze MA product. When the final step is reached, no lamellar-structure is detected. The steady state condition is observed after 8 hours and 10 hours milling for 15wt.%Al and 30wt.%Al alloy, respectively. The microhardness continuously increases up to 10 hours after then it remains constant.

  • PDF

Material Life Cycle Assessment on Mg2NiHx-5 wt% CaO Hydrogen Storage Composites (Mg2NiHx-5 wt% CaO 수소 저장 복합재료의 물질전과정평가)

  • Shin, Hyo-Won;Hwang, June-Hyeon;Kim, Eun-A;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.107-114
    • /
    • 2021
  • Material Life Cycle Assessment (MLCA) was performed to analyze the environmental impact characteristics of the Mg2NiHx-5 wt% CaO hydrogen storage composites' manufacturing process. The MLCA was carried out by Gabi software. It was based on Eco-Indicator 99' (EI99) and CML 2001 methodology. The Mg2NiHx-5 wt% CaO composites were synthesized by Hydrogen Induced Mechanical Alloying (HIMA). The metallurgical, thermochemical characteristics of the composites were analyzed by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), specific surface area analysis (Bruner-Emmett-Teller, BET), and thermogravimetric analysis (TGA). As a result of the CML 2001 methodology, the environmental impact was 78% for Global Warming Potential (GWP) and 22% for Eutrophication Potential (ETP). In addition, as a result of applying the EI 99' methodology, the acidification was the highest at 43%, and the ecotoxicity was 31%. Accordingly, the amount of electricity used in the manufacturing process may have an absolute effect on environmental pollution. Also, it is judged that the leading cause of Mg2NiHx-5 wt% CaO is the addition of CaO. Ultimately, it is necessary to research environmental factors by optimizing the process, shortening the manufacturing process time, and exploring eco-friendly alternative materials.

Microstructures and Repeated Usage-Properties of de-$NO_{x}$ Transition Metals/ZSM-5 Catalyst Made by Mechanical Alloying Method (기계적합금화법을 이용하여 제조된 $NO_{x}$ 제거용 천이금속/ZSM-5촉매의 미세구조 및 반복사용특성)

  • 조규봉;안인섭;남태현
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.273-278
    • /
    • 1998
  • $De-NO_x$ transition metals(Cu, Co)/ZSM-5 catalyst was made by mechanical alloying method, and their microstructures and repeated usage-properties were investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The conversions ability of NO in the catalyst was measured. A part of ZSM-5 in CO/ZSM-5 composite powders was amorphous and the amorphous phase became less stable with increasing Co content. Conversion ability of NO in 10Cu/ZSM-5 powders decreased from 89% to 12% and that in 10Co/ZSM-5 decreased from 22% to 17% by 7 times conversion tests.

  • PDF