• Title/Summary/Keyword: 기계상태 진단

Search Result 232, Processing Time 0.024 seconds

Intelligent Diagnosis of Grinding State Using AE and Power Signals (음향방출과 동력 신호에 의한 인공지능형 연삭상태 진단)

  • Kwak, J.S.;Ha, M.K.
    • Journal of Power System Engineering
    • /
    • v.6 no.2
    • /
    • pp.60-67
    • /
    • 2002
  • 연삭가공은 나노스케일(Nano-scale)의 미소한 입자 절삭날을 이용한 가공으로, 공작물의 표면을 경면(Mirror surface)으로 가공할 수 있어 제품의 최종 마무리공정으로 사용되어 왔다. 그러나 연삭공정에 있어서는 공구(연삭숫돌)의 수명이 다하거나 가공계(Machining system)가 불안정해지면 채터진동과 연삭버닝 등의 현상이 발생하여 가공물의 표면품위를 저하시키는 요인으로 작용하고 있다. 따라서 본 연구는 원통플른지 연삭공정을 대상으로 공작물에서 발생하는 음향방출 신호와 연삭기 주축 모터의 동력 신호를 연삭가공 중에 검출하고, 이를 신경회로망에 적용하여 연삭가공 상태를 진단하는 시스템을 구축하고, 그 성능을 평가하였다.

  • PDF

Report on Predictive Maintenance System using Condition Monitoring System of Hydro-turbine Generator (수차발전기 상태진단시스템을 이용한 예지보전체계 사례)

  • Ko, Sung-Ho;Jeong, Yong-Chae;Choi, Seong-Pil;Kwack, Young-Kyun;Han, Seung-Yeul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.1
    • /
    • pp.29-34
    • /
    • 2010
  • The purpose of this study is to explain the importance of Vibration Monitoring Device by introducing an example of Predictive Maintenance System using Condition Monitoring System of Hydro-turbine generator. Confirming vibration of generation equipment is commissioning procedure during equipment completion for checking guaranteed items. Data from Generator output range are used to determine output band to continue the performance of equipment. The Vibration Monitoring System is not absolute method of maintenance, but if it is used well with expert, it will be visible, data-analyzed, scientific maintenance more than others. And also, Condition Monitoring System is very important for remote controlled small hydro-power plant although most of it is installed in Large hydro-power plant.

Automobile diagnosis by euro-Fuzzy Technique (뉴로-퍼지 기법에 의한 자동차 진단)

  • Shin, Joon;Oh, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1833-1840
    • /
    • 1992
  • In the diagnostic process for automobile, Neuro-Fuzzy technique was compared with the conventional diagnostic method for the verification of performance, and proto-type system was developed. For the utilities of the system, 1/3 octave filter(band-pass filter) and A/D converter were used for data acquisition and then data were analyzed using octave band processing and pattern recognition using hamming network algorithm. In order to raise the reliability of the diagnostic results by considering many operating variables and condition of automobile to be diagnosed, fuzzy inference technique was applied in combining several information. The validation of this diagnostic system was examined through computer simulation and experiment, and it showed an acceptable performance for diagnostic process.

New Machine Condition Diagnosis Method Not Requiring Fault Data Using Continuous Hidden Markov Model (결함 데이터를 필요로 하지 않는 연속 은닉 마르코프 모델을 이용한 새로운 기계상태 진단 기법)

  • Lee, Jong-Min;Hwang, Yo-Ha
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.146-153
    • /
    • 2011
  • Model based machine condition diagnosis methods are generally using a normal and many failure models which need sufficient data to train the models. However, data, especially for failure modes of interest, is very hard to get in real applications. So their industrial applications are either severely limited or impossible when the failure models cannot be trained. In this paper, continuous hidden Markov model(CHMM) with only a normal model has been suggested as a very promising machine condition diagnosis method which can be easily used for industrial applications. Generally hidden Markov model also uses many pattern models to recognize specific patterns and the recognition results of CHMM show the likelihood trend of models. By observing this likelihood trend of a normal model, it is possible to detect failures. This method has been successively applied to arc weld defect diagnosis. The result shows CHMM's big potential as a machine condition monitoring method.

Review of Application Cases of Machine Condition Monitoring Using Oil Sensors (윤활유 분석 센서를 통한 기계상태진단의 문헌적 고찰(적용사례))

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.307-314
    • /
    • 2020
  • In this paper, studies on application cases of machine condition monitoring using oil sensors are reviewed. Owing to rapid industrial advancements, maintenance strategies play a crucial role in reducing the cost of downtime and improving system reliability. Consequently, machine condition monitoring plays an important role in maintaining operation stability and extending the period of usage for various machines. Machine condition monitoring through oil analysis is an effective method for assessing a machine's condition and providing early warnings regarding a machine's breakdown or failure. Among the three prevalent methods, the online analysis method is predominantly employed because this method incorporates oil sensors in real-time and has several advantages (such as prevention of human errors). Wear debris sensors are widely employed for implementing machine condition monitoring through oil sensors. Furthermore, various types of oil sensors are used in different machines and systems. Integrated oil sensors that can measure various oil attributes by incorporating a single sensor are becoming popular. By monitoring wear debris, machine condition monitoring using oil sensors is implemented for engines, automotive transmission, tanks, armored vehicles, and construction equipment. Additionally, such monitoring systems are incorporated in aircrafts such as passenger airplanes, fighter airplanes, and helicopters. Such monitoring systems are also employed in chemical plants and power plants for managing overall safety. Furthermore, widespread application of oil condition diagnosis requires the development of diagnostic programs.

Literature Review of Machine Condition Monitoring with Oil Sensors -Types of Sensors and Their Functions (윤활유 분석 센서를 통한 기계상태진단의 문헌적 고찰 (윤활유 센서의 종류와 기능))

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.297-306
    • /
    • 2020
  • This paper reviews studies on the types and functions of oil sensors used for machine condition monitoring. Machine condition monitoring is essential for maintaining the reliability of machines and can help avoid catastrophic failures while ensuring the safety and longevity of operation. Machine condition monitoring involves several components, such as compliance monitoring, structural monitoring, thermography, non-destructive testing, and noise and vibration monitoring. Real-time monitoring with oil analysis is also utilized in various industries, such as manufacturing, aerospace, and power plants. The three main methods of oil analysis are off-line, in-line, and on-line techniques. The on-line method is the most popular among these three because it reduces human error during oil sampling, prevents incipient machine failure, reduces the total maintenance cost, and does not need complicated setup or skilled analysts. This method has two advantages over the other two monitoring methods. First, fault conditions can be noticed at the early stages via detection of wear particles using wear particle sensors; therefore, it provides early warning in the failure process. Second, it is convenient and effective for diagnosing data regardless of the measurement time. Real-time condition monitoring with oil analysis uses various oil sensors to diagnose the machine and oil statuses; further, integrated oil sensors can be used to measure several properties simultaneously.

Development of Diagnostic Expert System for Machining Process Ffailure Detection (가공공정의 이상상태진단을 위한 진단전문가시스템의 개발)

  • Yoo, Song-Min;Kim, Young-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.147-153
    • /
    • 1997
  • Fault diagnosis technique in machining system which is one of engineering techniques absolutely necessary to automation of manufacturing system has been proposed. As a whole, diagnosis process is explained by two steps: sensor data acquisition and reasoning current state of system with the given sensor data. Flexible disk grinding process implemented in milling machine was employed in order to obtain empirical manufacturing process information. Resistance force data during machining were acquired using tool dynamometer known as sensor which is comparably accurate and reliable in operation. Tool status during the process was analyzed using influnece diagram assigning probability from the statistical analysis procedure.

  • PDF

A Monitoring System Based on an Artificial Neural Network for Real-Time Diagnosis on Operating Status of Piping System (가스배관망 작동상태 실시간 진단용 인공신경망 기반 모니터링 시스템)

  • Jeon, Min Gyu;Cho, Gyong Rae;Lee, Kang Ki;Doh, Deog Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.199-206
    • /
    • 2015
  • In this study, a new diagnosis method which can predict the working states of a pipe or its element in realtime is proposed by using an artificial neural network. The displacement data of an inspection element of a piping system are obtained by the use of PIV (particle image velocimetry), and are used for teaching a neural network. The measurement system consists of a camera, a light source and a host computer in which the artificial neural network is installed. In order to validate the constructed monitoring system, performance test was attempted for two kinds of mobile phone of which vibration modes are known. Three values of acceleration (minimum, maximum, mean) were tested for teaching the neural network. It was verified that mean values were appropriate to be used for monitoring data. The constructed diagnosis system could monitor the operation condition of a gas pipe.