• Title/Summary/Keyword: 기계도면

Search Result 78, Processing Time 0.378 seconds

Quality Characteristics of the Bread Added Dandelion Leaf Powder (민들레 잎분말 첨가에 따른 기능성 식빵의 품질특성)

  • 강미정
    • Food Science and Preservation
    • /
    • v.9 no.2
    • /
    • pp.221-227
    • /
    • 2002
  • Effects of adding of dandelion flour on the quality characteristics of bread were investigated. Dandelion flour was substituted at levels of 0, 0.5, 1.0, 2.0% to wheat flour for bread making, respectively. Quality characteristics of bread such as dough yield, dough microstructure, loaf volume, bread yield, crumb color, mechanical property and sensory evaluation were analyzed. Addition of dandelion flour to wheat flour increased dough yield, loaf volume and bread yield. And, addition of dandelion flour caused a decrease in the lightness and an increase in the redness. The results of texture evaluation revealed that hardness, chewiness, springiness of bread increased as the level of dandelion flour was increased. As the addition level of dandelion flour increased, flavor balance, bitterness, aftertaste, grassy odor of bread increased but overall acceptability, moistness decreased. In conclusion, bread with 0.5% leaf powder was the best quality in bread properties.

Mechanical Behavior of New Thin Sandwich Panel Subjected to Bending (새로운 박판샌드위치 판재의 삼점굽힘거동)

  • Lee, Jung-In;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.529-535
    • /
    • 2013
  • A new thin sandwich panel composed of an aluminum expanded metal core adhesively jointed with stainless steel face sheets is introduced, and its mechanical behavior under three-point bending is investigated. The strength and stiffness are analyzed theoretically, and the press-formability and strength enhancement are evaluated experimentally. The specimens with the specific configurations exhibit face yielding well before face-core separation, which means that the sandwich panel can be formed by a press without failure. The measured load levels corresponding to the face yielding and the face-core separation agree fairly well with the theoretical estimations. For a given weight, the sandwich panel is superior to a solid panel in terms of strength, stiffness, and press-formability.

Numerical analysis of natural convection from a horizontal isothermal surface immersed in water near its density extremum (최대밀도점 부근의 물속에 잠겨있는 수평등온도면에 의하여 야기되는 자연대류의 수치해석)

  • 김병하;조승환;유갑종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.197-206
    • /
    • 1990
  • Numerical results of heat transfer from a horizontal isothermal surface are presented for wall temperature T$_{w}$ = 0 .deg. C and ambient water temperature, T$_{\infty}$, from 1 .deg. C to 15 .deg. C. They include streamlines, temperature profiles, local heat transfer coefficients and average Nusselt numbers for the entire flow fields. For a upward-facing horizontal isothermal surface, the results show steady two dimensional flow regimes for T$_{\infty}$ .leg. 4.4 .deg. C, but no solution was obtained above T$_{\infty}$ = 4.4 .deg. C. For a downward-facing horizontal isothermal surface, the flow regimes are steady two dimensional flow for T$_{\infty}$ .geq. 4.9 .deg. C, and the numerical calculation was failed below this ambient water temperature. The mean Nusselt number has its maximum value at about T$_{\infty}$ = 3.4 .deg. C for upward-facing horizontal isothermal surface. For the case of downward-facing horizontal isothermal surface, the mean Nusselt number increases as the ambient water temperature increases.es.s.s.

Fatigue Life and Stress Spectrum of Wing Structure of Aircraft (항공기 주익 구조물의 응력스펙트럼 및 피로수명 추정에 관한 연구)

  • Kang, Ki-Weon;Koh, Seung-Ki;Choi, Dong-Soo;Kim, Tae-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1185-1191
    • /
    • 2010
  • Aged aircraft have several cracks as a results of long-term service, and these cracks affect the safety and decrease the rate of operation of the aircraft. To solve these problems, crack propagation analysis should be performed to determine the service life at fatigue critical location(FCL). It is, however, almost impossible to obtain the stress spectrum, which is crucial for crack propagation analysis of the FCLs of wing structure of aged aircraft. In this study, to analyze the fatigue crack propagation behavior at the FCL of an aged aircraft, first finite element analysis is performed for a 3D geometry model of the aircraft wing structure, which is obtained using CATIA based on the paper drawings. Then, the transfer function and stress-spectrum of the FCL are derived using the load factor data and the FEA results. Finally, the crack propagation rates of the FCL are evaluated using the commercial software, NASGRO 6.0.

Customized Aerodynamic Simulation Framework for Indoor HVAC Using Open-Source Libraries (공개 라이브러리 기반 실내 공조 맞춤형 전산모사 시스템 개발)

  • Sohn, Ilyoup;Roh, Hyunseok;Kim, Jaesung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.2
    • /
    • pp.135-143
    • /
    • 2017
  • A customized CFD simulator to perform thermo-fluid dynamic simulations of an HVAC for an indoor space is presented. This simulation system has been developed for engineers studying architectural engineering, as the HVAC mechanical systems used in housings and buildings. Hence, all functions and options are so designed to be suitable that they are suitable for non-CFD experts as well as CFD engineers. A Computational mesh is generated by open-source libraries, FEMM (Finite Element Method Magnetics), and OpenFOAM. Once the boundary conditions are set, the fluid dynamic calculations are performed using the OpenFOAM solver. Numerical results are validated by comparing them with the experimental data for a simple indoor air flow case. In this paper, an entirely new calculation process is introduced, and the flow simulation results for a sample office room are also discussed.

PS-NC Genetic Algorithm Based Multi Objective Process Routing

  • Lee, Sung-Youl
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.4
    • /
    • pp.1-7
    • /
    • 2009
  • This paper presents a process routing (PR) algorithm with multiple objectives. PR determines the optimum sequence of operations for transforming a raw material into a completed part within the available machining resources. In any computer aided process planning (CAPP) system, selection of the machining operation sequence is one of the most critical activities for manufacturing a part and for the technical specification in the part drawing. Here, the goal could be to generate the sequence that optimizes production time, production cost, machine utilization or with multiple these criteria. The Pareto Stratum Niche Cubicle (PS NC) GA has been adopted to find the optimum sequence of operations that optimize two conflicting criteria; production cost and production quality. The numerical analysis shows that the proposed PS NC GA is both effective and efficient to the PR problem.

A Study on the Specialized Classrooms of Governmental Secondary Schools in the Japanese Colonial Era -Focused on Architectural Drawings for Collected by National Archives of Korea (일제 강점기 관립 중등학교 특별교실에 관한 연구 -국가기록원 소장 학교건축 도면을 중심으로)

  • Lee, Jeong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2476-2483
    • /
    • 2014
  • This study aims to review the characteristics of specialized classrooms for governmental secondary schools in the Japanese Colonial Era by analyzing architectural drawings collected by National Archives of Korea. The results of this study are summarized as follows 1) Under the influence of Japanese science promotion of that time, specialized classrooms for science were considered as one of essential facilities. Typically exclusive specialized classrooms were assigned to two major science subjects : physics-chemistry and biology. 2) To science specialized classrooms, ancillary rooms for preparation, experiment equipment and specimen were attached and science lecture room with stepped floor was planned additionally only for the lecture on theories and the demonstration of experiment. 3) Specialized classrooms for science were zoned independently of other facilities because of the special equipments and safety. 4) Art rooms were common to both boys' and girls' schools but concerning music rooms, girls' schools had special concerns, whereas boys' schools did not. 5) Specialized classrooms for homemaking subject of girls' school were as much important as those for science subjects of boys' school. 6) Some early-established Korean boys' schools had handicraft rooms which were the symbol of vocational education-oriented, unequal policy on Koreans. Though not general cases, specialized classrooms for geography-history were planned for Japanese boys' school. Restricted to governmental secondary schools but considering the uncommon state of specialized classrooms of that time, these characteristics show conditions of early time when special classrooms were introduced into Korea.

The Modelling and Machining of Leisure Boat Plug using CAD/CAM System (CAD/CAM 시스템을 이용한 레저보트의 플러그 모델링 및 가공)

  • Kim, Seong-Il
    • 대한공업교육학회지
    • /
    • v.33 no.2
    • /
    • pp.259-272
    • /
    • 2008
  • In order to improve the productivity and quality of boat's mold in leisure boat industry, the development of modelling and machining technology of leisure boat's plug is strongly required. The traditional lines drawing approach by hand required the designer to both create fair curves and to make sure that the curves matched up to each other in the three main drawing views: profile, plan, and section. However, one will find when studying lines drawings in books that the curves might look smooth and fair, but the lines do not agree exactly in the three views. Therefore, the 2 dimensional drawing data of leisure boat are transformed using 3 dimensional design s/w and CAM s/w. In addition, the leisure boat is designed with a 3 dimensional s/w. The NC cutting data are generated by the CAM s/w. The surface characteristics of machined surface are investigated at various cutting conditions such as spindle speed, feed speed, and cutting material.

Leakage noise detection using a multi-channel sensor module based on acoustic intensity (음향 인텐시티 기반 다채널 센서 모듈을 이용한 배관 누설 소음 탐지)

  • Hyeonbin Ryoo;Jung-Han Woo;Yun-Ho Seo;Sang-Ryul Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.414-421
    • /
    • 2024
  • In this paper, we design and verify a system that can detect piping leakage noise in an environment with significant reverberation and reflection using a multi-channel acoustic sensor module as a technology to prevent major plant accidents caused by leakage. Four-channel microphones arranged in a tetrahedron are designed as a single sensor module to measure three-dimensional sound intensity vectors. In an environment with large effects of reverberation and reflection, the measurement error of each sensor module increases on average, so after placing multiple sensor modules in the field, measurement results showing locations with large errors due to effects such as reflection are excluded. Using the intersection between three-dimensional vectors obtained from several pairs of sensor modules, the coordinates where the sound source is located are estimated, and outliers (e.g., positions estimated to be outside the site, positions estimated to be far from the average position) are detected and excluded among the points. For achieving aforementioned goal, an excluding algorithm by deciding the outliers among the estimated positions was proposed. By visualizing the estimated location coordinates of the leakage sound on the site drawing within 1 second, we construct and verify a system that can detect the location of the leakage sound in real time and enable immediate response. This study is expected to contribute to improving accident response capabilities and ensuring safety in large plants.

Fabrication of Full-Scale Combustion Chamber of Liquid Rocket Engine for Ground Hot Firing Tests (실물형 고압 연소기의 연소시험 검증용 제작)

  • Kim Jonggyu;Seo Seonghyeon;Kim Seunghan;Han Yeoungmin;Ryu Chulsung;Seol Wooseok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.305-308
    • /
    • 2005
  • This paper presents a fabrication of a full-stale combustion chamber of a liquid rocket engine for a ground hot firing test. Engine drawings for manufacturing were prepared after conceptual and detail designs. The combustor is composed of a head and a chamber. SUS316L is used for materials of the head because of the good quality in low temperature. Inner materials of the ablative cooling chamber is silica/phenolic and outer case materials is the SUS316L. Materials of the regenerative cooling chamber are C18200 and SUS316L. After lathe, general milling and MCT machinings, components were finished by electrolytic polishing. A brazing method was applied for bonding the injectors and the injector plate, the regenerative cooling chamber because of structure configurations.

  • PDF