• Title/Summary/Keyword: 급액제어

Search Result 31, Processing Time 0.038 seconds

Comparison on Irrigation Management Methods by Integrated Solar Radiation and Drainage Level Sensor in Rockwool and Coir Bag Culture for Tomato (토마토의 암면과 코이어 자루재배시 일사량제어법과 배액전극제어법에 의한 급액제어 방법 비교)

  • Kim, Sung-Eun;Sim, Sang-Youn;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.19 no.1
    • /
    • pp.12-18
    • /
    • 2010
  • Irrigation management methods controlled by integrated solar radiation (ISR) or drainage level sensor were evaluated in rockwool or coir bag culture as tomato (Solanum lycopersicum L.) production system. Substrate water content and drainage percentage were more stable in the drainage level sensor method than in the ISR method regardless of substrate type. Total yield and marketable yield were high in the drainage level sensor method, but not between substrates in the same irrigation management method. Sugar content was affected more by the substrate type than irrigation method. The drainage level sensor method was elucidated to be better than the ISR method regardless of substrate type.

Design and Implementation of irrigation management embedded system controlling substrate moisture directly (배지수분 직접제어에 의한 급액관리 임베디드 시스템 설계 및 구현)

  • Lee, Han-Kwon;Byun, Young-Ki;Lee, Seung-Hyuk;Pack, Hyun-Ok;Cho, Tae-Kyung;Kim, Young-Shik;Park, Byoung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.188-194
    • /
    • 2006
  • Since the late 1920's possibility of commercial hydroponics was testified practically. Hydroponics is used as environmentally friendly agriculture production system recently with high effectiveness. Now that existing irrigation control systems such as time control or solar radiation control cannot satisfy stable water content in root substrates, the needs for new irrigation system keep increasing. In this paper, we proposed environmentally friendly automatic irrigation management system by employing automation system based on electronic control system, which could solve problems based on manual irrigation management system. In addition, it suggested to be applied to any crops and will be able to overcome existing limit in irrigation by measuring the water content of root substrate in realtime.

  • PDF

Growth and Quality of the Strawberry (Fragaria annanassa Dutch. cvs. 'Sulhyang') as affected by Complex Nutrient Solution Supplying Control System using Integrated Solar Irradiance and Substrate Moisture Contents in Hydroponics (수경재배 시 적산 일사량과 배지 수분 함량 복합 급액 제어에 의한 '설향' 딸기(Fragaria annanassa Dutch. cvs. 'Sulhyang')의 생육 및 품질)

  • Choi, Su Hyun;Kim, So Hui;Lee Choi, Gyeong;Jeong, Ho Jeong;Lim, Mi Young;Kim, Dae Young;Lee, Seon Yi
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.367-376
    • /
    • 2021
  • Strawberry cultivation in Korea is grown in greenhouse, but most farms manage their water supply using a timer control method based on the experience of growers. The timer control has problems in that it is difficult to consider the weather condition, the growth stage of crops, and the moisture content of the substrate, so that the crops cannot be managed at an optimal level, and the accuracy of cultivation management are lacking. The watering methods using integrated solar irradiance and substrate moisture contents are control systems that provide eco-friendly and precise water supply considering the growth conditions of crops. The purpose of this study was to compare the combined water supply control with integrated solar irradiance and substrate moisture contents and timer control method in hydroponic cultivation of strawberries using coir, and to set the optimal integrated solar irradiance level for complex water supply control. The irrigation system was automatically watered when it reached 100, 150, 250 J·cm-2 based on the external solar irradiance, and forced irrigation was performed at a substrate moisture content of less than 60% in all treatments. The amount of irrigation at once was 50 mL. The timer treatment was applied as a control. The smaller the level of integrated radiation to start watering, the greater the daily amount of irrigation. Both the fresh weight and dry weight per plant were higher in the complex irrigation control method than the timer control, and the 100 and 150 J·cm-2 treatment had the highest fresh weight, and the 100 J·cm-2 treatment showed a significantly higher dry weight. The yield was also significantly higher in the complex control method than in the timer, and the early yield increased as the level of integrated solar irradiance was smaller. The fresh weight of fruit was the lowest in the timer-controlled irrigation. As a result of this study, the possibility of combined control irrigation method using integrated solar irradiance and substrate moisture content was confirmed for precise water supply management of strawberries in hydroponics.

Development of a Trial Product for Irrigation Management in Substrate Culture (고형배지경 급액관리 시작기 개발)

  • Kim, Sung-Eun;Sim, Sang-Youn;Lee, Sang-Don;Kim, Young-Shik
    • Journal of agriculture & life science
    • /
    • v.44 no.5
    • /
    • pp.129-135
    • /
    • 2010
  • This experiment was carried out to commercialize an irrigation control system by finding out problems and solving them in application of a nutrient supply system through this experiment. Its efficiency had been tested through hydroponic cultivation of tomato and cucumber using this system in the farmer's plastic house (1-2W, 20a : Yanggyo-ri, Oseong-myeon Gyeonggi-do) from November. 2006, too. In the first cultivation, tomato seeds (cultivar Coco, Takii Seed Co. Japan) were sowed on November 8, 2006, and transplanted on January 8, 2007. and then, in the second, cucumber (Chuichong, Nongwoo Seed Co.) were cultivated in the same plastic house (sowing date : June 27, transplanting date : July 13). In the third, another cucumber cultivar (Jo-woon, Dongbu-hannong Seed Co.) were cultivated (sowing date : September 5, transplanting date : September 23). All of seedlings were transplanted on perlite bag ($W340{\times}L1,200{\times}H150mm$, 40L). By using this system, 971 boxes (5 kg/box) of tomato were produced and sold, and then total income was 5,466 thousand won per 10a. On the second cultivation, total amount of cucumber production was 489 boxes (50 ea/box), and total income was 7,380 thousand won. On the third cultivation, total amount of production was 67 boxes (100 ea/box), and total income was 1,854 thousand won. On the other hand, this system saved irrigated water by 50% ($4,000{\rightarrow}2,000L/10a/day$) in tomato cultivation, and by 44%($4,500{\rightarrow}2,500L/10a/day$) in cucumber cultivation. It also saved cost of nutrients by 50% in tomato ($1,648{\rightarrow}824thousand\;won/10a$), and 44% in cucumber ($1,648{\rightarrow}725thousand\;won/10a$). Furthermore this irrigation system maintained moisture content in perlite bag stable during cultivation period. Therefore, this system was successfully applied on farmer's greenhouse without a problem and can be commercialized for farmers.

Comparison of Growth Characteristics of Strawberry according to Integrated Solar Radiation Control by Growth Stages (딸기 생육단계별 일사비례제어 급액 방법에 따른 딸기 생육 비교)

  • Kim, So Hui;Roh, Mi Young;Choi, Gyeong Lee;Lim, Mi Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.279-285
    • /
    • 2022
  • This study was carried out to establish proper irrigation standards by growth stages using integrated solar radiation (ISR) for strawberry hydroponics cultivation. The irrigation methods were automatically controlled when it reached ISR values based on the external solar irradiance. The ISR standards were set at 150 J·cm-2 and 200 J·cm-2, and as the last treatment, ISR value was changed from 200 J·cm-2 to 150 J·cm-2 according to growth stage. The timer-automated irrigation system was applied as a control. The monthly average irrigation frequency of 150 J·cm-2, growth stages (150 J·cm-2) treatment in March were 5.6 times, that of 200 J·cm-2, growth stages (200 J·cm-2) treatment in December were 2.7 times, and that of timer system was 3.6-3.8 times. The water use efficiency (WUE) of timer was 19.8 g·L-1 lower than ISR. There was no significant difference in growth and fruit characteristics between ISR and timer. The total yield and rate of marketable fruit of treatments by growth stages was the highest 328 g/10 a and 85.3 %, respectively. Therefore, in case of strawberry hydroponic cultivation, controlling ISR by growth stages was more helpful to improve yield rather than applying same ISR standard during cultivation.

A Fundamental Study on the Development of Irrigation Control Model in Soilless Culture (양액재배 급액제어모델 개발에 관한 기초연구)

  • 남상운
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.2
    • /
    • pp.37-43
    • /
    • 1999
  • This study was conducted to develop the simple and convenient irrigation control model which can maintain the appropriate rates of irrigation and drainage of nutrient solution according to the enviornmental conditions and growth stages in soilless culture of cucumber. In order to obtain fundamental data for development of the model, investigation of the actual state of soilless culture practices was carried out. Most irrigatioin systems of soillness culture were controlled by the time colock. Evapotranspiration of cucumber in soilness culture was investigated and correlations with environmental conditions were analyzed , and its estimating model was developed. In order to develop the irrigation system which can control the amount of nutrient solution applied according to seasons, weather conditions, and growth stages, a irrigation clock control was developed. Applicability of the model was tested by simulation. Drainage rates of nutrient solution controlled by conventional time clock, integrated solar radiation, and the developed model were 61% , 20%, and 32% , respectively in cucumber perlite culture.

  • PDF

Implementation of irrigation embedded system and Design based on eco-friendly web (Web 기반 친환경 임베디드 시스템 설계 및 구현)

  • Jung, Yo-Sung;Hong, Soo-Yong;Lee, Jae-Hyun;Cho, Tae-Kyung;Kim, Young-Shik;Park, Byoung-Soo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.11a
    • /
    • pp.181-184
    • /
    • 2007
  • 본 논문에서는 수경재배의 비중이 늘어난 만큼 새로운 친환경 저자 정밀 급액관리의 개발이 시급함을 언급하고 현재의 한계를 극복 할 수 있는 배액 제어법을 개발 하고자 한다. 급액관리 임베디드 시스템은 정확한 시간 제어, 일사량 제어 전자 방식으로서 수동식 배액 제어법의 문제점을 해결할 수 있으며 뿐만 아니라 사용자가 온실의 없을 경우에도 급액관리를 할 수 있도록 web기반으로 구현하여 편의를 도모하였다.

  • PDF

Appropriate Daily Last Irrigation Time in Coir Bag Culture for Tomato (토마토 코이어 자루재배시 적정 급액마감시각 구명)

  • Kim, Sung-Eun;Sim, Sang-Youn;Lee, Moon-Hang;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.21 no.1
    • /
    • pp.12-19
    • /
    • 2012
  • This research was performed to determine the appropriate daily last irrigation time to enhance the plant growth and the water and fertilizer use efficiencies in coir bag culture for tomato plant. The time to finish the daily irrigation was set by 1, 2, 3 and 4 hours before the sunset. The water content in the substrate was greatly affected by the last irrigation time. The earlier the last time, the greater the daily fluctuation of water contents in the substrate. The daily irrigation times were not affected by using irrigation management system controlled by drainage electrodes or the physiochemical properties of coir. The growth characteristics were not significantly different among the treatments. The highest marketable yields were obtained in the treatment finishing two hours before sunset, and the lowest yields were obtained in the the treatment finishing 4 hours before sunset. Based on the result from surveying quantity of irrigated water for 128 days of the experiment period, the water and fertilizer use efficiencies were lowest in the treatment finishing 4 hours before sunset, and the highest in the treatment finishing 2 hours before sunset. In terms of plant growth, yields, water and fertilizer use efficiencies, 2 hours before sunset treatment was determined as the most economical and desirable irrigation schedule.

Design of Measuring Trays in the Irrigation System Using Drainage Electrodes for Tomato Perlite Bed Culture (토마토 펄라이트 베드재배시 배액전극 제어법에 적합한 측정틀 설계)

  • Kim, Sung-Eun;Kim, Young-Shik;Sim, Sang-Youn
    • Horticultural Science & Technology
    • /
    • v.29 no.6
    • /
    • pp.568-574
    • /
    • 2011
  • Measuring tray as a component in irrigation control system using drainage electrodes was designed and applied for tomato perlite bed culture, and the effectiveness of the irrigation control system was investigated in terms of cultural development and cultivation costs. Five different types of measuring trays equipped with drainage electrodes were tested and the traditional tray was used as the control equipped with time clock. After the first experiment, "Tube-2" was removed because of instability of water content in the substrate. After second experiment, "Tube-1" was removed because of instability of water content in the substrate and low plant yields. In third experiment, "Up-Board" exhibited the best stability in water contents and yields as well as efficiencies in water and fertilizer utilization. The "Up-Board" was the most economical and the easiest system among the tested trays. Therefore, the "Up-Board" system was concluded as the excellent design to apply for the control method using drainage electrodes for tomato perlite bed culture.

Determination of Proper Irrigation Scheduling for Automated Irrigation System based on Substrate Capacitance Measurement Device in Tomato Rockwool Hydroponics (토마토 암면재배에서 정전용량 측정장치를 기반으로 한 급액방법 구명)

  • Han, Dongsup;Baek, Jeonghyeon;Park, Juseong;Shin, Wonkyo;Cho, Ilhwan;Choi, Eunyoung
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.366-375
    • /
    • 2019
  • This experiment aims to determine the proper irrigation scheduling based on a whole-substrate capacitance using a newly developed device (SCMD) by comparing with the integrated solar radiation automated irrigation system (ISR) and sap flow sensor automated irrigation system (SF) for the cultivation of tomato (Solanum lycopersicum L. 'Hoyong' 'Super Doterang') during spring to winter season. For the SCMD system, irrigation was conducted every 10 minutes after the first irrigation was started until the first run-off was occurred, of which the substrate capacitance was considered to be 100%. When the capacitance threshold (CT) was reached to the target point, irrigation was re-conducted. After that, when the target drain volume (TDV) was occurred, the irrigation stopped. The irrigation volume per event for the SCMD was set to 50, 75, or 100 mL at CT 0.9 and TDV 100 mL during the spring to summer cultivation, and the CT was set to 0.65, 0.75, 0.80, or 0.90 in the winter cultivation. When the irrigation volume per event was set to 50, 75, or 100 mL, the irrigation frequency in a day was 39, 29, and 19, respectively, and the drain rate was 3.04, 9.25, and 20.18%, respectively. When the CT was set to 0.65, 0.75, or 0.90 in winter, the irrigation frequency was about 6, 7, 15 times, respectively and the drain rate was 9.9, 10.8, 35.3% respectively. The signal of stem sap flow at the beginning of irrigation starting time did not correspond to that of solar irradiance when the irrigation volume per event was set to 50 or 75 mL, compared to that of 100 mL. In winter cultivation, the stem sap flow rate and substrate volumetric water content at the CT 0.65 treatment were very low, while they were very high at CT 0.90 was high. All the integrated data suggest that the proper range of irrigation volume per event is from 75 to 100 mL under at CT 0.9 and TDV 100 mL during the spring to summer cultivation, and the proper CT seems to be higher than 0.75 and lower than 0.90 under at 75 mL of the irrigation volume per event and TDV 70 mL during the winter cultivation. It is going to be necessary to investigate the relationship between capacitance value and substrate volumetric water content by determining the correction coefficient.