• Title/Summary/Keyword: 급곡선

Search Result 106, Processing Time 0.022 seconds

Optimization of Characteristics of Longitudinal Creepage for Running Stability on Sharp Curved Track (급곡선 주행 안정화를 위한 주행방향 크리피지 특성 최적화 연구)

  • Sim, Kyung-Seok;Park, Tae-Won;Lee, Jin-Hee;Kim, Nam-Po
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • Urban railway vehicles operate in downtown areas. Due to increases in the number of passengers and changes in the service plans, railway vehicles are expected to operate on sharp curved tracks. However, on these tracks, the running stability of the railway vehicles is significantly decreased and the creepage is increased. Creepage causes the wheel/rail to wear and vibration. Therefore, reducing the creepage helps ensure the running stability and can be beneficial for the environment and cost. In this paper, the longitudinal creepage is analyzed using a railway vehicle model on a sharp curved track. Furthermore, in order to minimize the problems when a railway vehicle runs on a sharp curved track, the characteristics of a bogie are optimized using response optimization.

Development of a Interface Structure of Bogie and Carbody in Mountain Tram running on sharp Curves (급곡선 급경사 운행 산악트램의 대차 및 차체 연결 구조 개발)

  • Seo, Sung-il;Mun, Hyung-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.275-282
    • /
    • 2018
  • Mountain trams are an environmental-friendly transportation system that run wirelessly on an embedded track constructed on previous mountain roads, and can run despite the frozen road. On the other hand, there is some difficulty on sharp and steep tracks. In this study, after possible technical problems were defined in mountain trams running on a sharp and steep track, the design solutions for the interface structure of bogie and carbody were proposed. In addition, a prototype was made and its performance was tested to verify the solutions. Because the difference in the distance of the inner and outer rails on a sharp curve is severe enough to interrupt running, independent rotating wheels with different angular speeds were developed and applied. To prevent derailment due to the large attack angle and lateral force caused by the previous vehicle of 2bogie-and-1carbody on the sharp curve, a vehicle with 1bogie-and-1carbody was designed and applied. A prototype vehicle of 1bogie-and-1carbody with independent rotating wheels was made to improve the performance during the test running on a small track. A coupler was designed to absorb the large rotations of 3 degrees-of-freedom between the carbodies of a mountain tram running on the steep curved track. After a small scale prototype was made, the performance was verified by a function test.

Cause analysis of the electric train derailment occurred in turnout on a sharp curves. (급곡선 분기기에서 발생한 전동열차 탈선사고의 원인분석)

  • Lee, Seungwon;Woo, Kwanje;Jeong, Chanmook
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.411-416
    • /
    • 2018
  • It is generally not preferable to install a turnout on a sharp curves but it is not desirable for the safety of a train. However, in a mountainous area or a depot where a sufficient space can not be secured to secure a straight line. In this study, in order to analyze the cause of train derailment accident that occurred in the place where turnout is installed in a sharp curves, we performed derailment analysis using line data and accident vehicle data measured at the location where the accident occurred. This derailment coefficient maximum turnout at the start of the track and derailment curve analysis showed that even big enough to cause a derailment as 1.37 in size, which was found to be consistent with the actual site survey results derailment occurred.

Application technique on thrust jacking pressure of shield TBM in the sharp curved tunnel alignment by model tests (축소모형실험을 통한 급곡선 터널에서의 Shield TBM 추진 압력 적용 기술에 대한 연구)

  • Kang, Si-on;Kim, Hyeob;Kim, Yong-Min;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.335-353
    • /
    • 2017
  • This paper presents the application technique on thrust jacking pressuring of shield TBM in the sharp curved tunnel alignment by model tests. Recently, the application of shield TBM method as mechanized tunnelling is increasing to prevent the vibration and noise problems, which can be occurred in the NATM in the urban area in Korea. However, it is necessary to plan the sharp curved tunnel alignment in order to avoid the building foundation and underground structures, to develop the shield TBM operation technique in the shape curved tunnel alignment. Therefore, the main operation parameters of shield TBM in the curved tunnel alignment are reviewed and analyzed based on the case study and analytical study. The results show that the operation of shield jacking force system is the most important technique in the shape curved tunnel alignment. The simplified scaled model tests are also carried out in order to examine the ground-shield TBM head behaviour. The earth pressures acting on the head of shield TBM are investigated according to two different shield jacking force systems (uniform and un-uniform pressure) and several articulation angles. The results obtained from the model tests are analysed. These results will be very useful to understand the shield TBM head interaction behaviour due to the shield jacking operation technique in the shape curved tunnel alignment, and to develop the operation technique.

Influence of Initial Clamping Force of Tension Clamp on Performance of Elastic Rail Fastening System (텐션클램프의 초기 체결력이 탄성레일체결장치의 성능에 미치는 영향)

  • Lee, Dong Wook;Choi, Jung Youl;Baik, Chan Ho;Park, Yong Gul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1243-1251
    • /
    • 2013
  • The purpose of this study is to investigate the influence of initial clamping force of tension clamp on the performance of an elastic rail fastening system used in sharp curve track. In this study, the initial clamping force and the increasing lateral wheel loads were conducted in the analytical and experimental study, i.e., finite element analysis, laboratory and field test. Using the analytical and experimental results, the performance of the tension clamp was investigated. It was found that the stress of tension clamp depends on the initial clamping force. Therefore the initial clamping force appeared to directly affect the compression stress of the tension clamp. It was found that the compression stress of tension clamp was transferred to the tensile stress by applied the lateral wheel load in service sharp curve track. Further, it was concluded that the initial clamping force was applied on the strengthening force for the tension clamp and then the appropriate initial clamping force was important to ensure a stable performance and long term endurance of tension clamp.

Damage Cause Analysis of Concrete Sleepers for Sharp Curved Track on Urban Railway Bridge (도시철도 교량상 급곡선 자갈궤도용 콘크리트침목 손상원인 분석)

  • Choi, Jung-Youl;Shin, Tae-Hyoung;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.517-522
    • /
    • 2021
  • In this study, the causes of damage to the concrete sleepers in a ballast track with under sleeper pads attached to the base of the sleepers installed in the sharp curved track(R=180m) of the urban railway bridge were analyzed. The damage types of concrete sleepers were investigated, and the correlation with track irregularity was reviewed. Also, stress generated in the concrete sleeper was reviewed through structural analysis. As a result, most of the cracks of the sleepers occurred in the section with severe track irregularity. In addition, as a result of the analysis, the stress generated in the track components and the sleepers was found to be reduce in the fastening system using the 4-anchor.

Study on the structure of the articulation jack and skin plate of the sharp curve section shield TBM in numerical analysis (수치해석을 통한 급곡선 구간 Shield TBM의 중절잭 및 스킨플레이트 구조에 관한 연구)

  • Kang, Sin-Hyun;Kim, Dong-Ho;Kim, Hun-Tae;Song, Seung-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.421-435
    • /
    • 2017
  • Recently, due to the saturation of ground structures and the overpopulation of pipeline facilities requires to development of underground structures as an alternative to ground structures. Thus, mechanized tunnel construction of the shield TBM method has been increasing in order to prevent vibration and noise problems in construction of the NATM tunnel for the urban infrastructure construction. Tunnel construction plan for the tunnel line should be formed in a sharp curve to avoid building foundation and underground structures and it is inevitable to develop a shield TBM technology that suits the sharp curve tunnel construction. Therefore, this study is about the structural stability technology of the articulation jack, shield jack and skin plate for the shield TBM thrust in case of the mechanized tunnel construction that is a straight and sharp curve line. The construction case study and shield TBM operation principle are examined and analyzed by the theoretical approach. The torque of the cutter head, the thrust of the articulation jack and the shield jack, the amount of over cutting for curve is important respectively in shield TBM construction of straight and sharp curve line. In addition, it is very important to secure the stability of the skin plate structure to ensure the safety of the inside worker. This study examines the general structure and construction of the equipment, experimental simulation was carried out through numerical analysis to examine the main factors and structural stability of the skin plate structure. The structural stability of the skin plate was evaluated and optimizes the shape by comparing the loads of the articulation jack by selecting the virtual soil to be applied in a straight and sharp curve line construction. Since the present structure and operation method of the shield TBM type in domestic constructions are very similar, this study will help to develop the localized shield TBM technology for the new equipment and the vulnerability and stability review.

Technologies for improving the running safety of a tram operating on the concrete embedded track (콘크리트 매립형 궤도를 운행하는 트램의 주행안전성 향상 기술)

  • Seo, Sung-il;Mun, Hyung-Suk;Kim, Sun-Chun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.717-724
    • /
    • 2017
  • To improve the running safety of a tram operating on a concrete embedded track, a bogie, the core system of the tram, was developed and fabricated. After it was integrated with the prototype car body, a short distance track with a sharp curve and steep gradient was constructed for the test operation. A formula to check the interference of the wheel flange with the track during running was proposed. Based on the results provided by the formula, the track was designed. Another simple formula was derived to estimate the derailment quotient and the wheel unloading ratio. During running on the track, the acceleration of the car body was measured and the interface status between the wheel and the track was monitored by a video system. According to the results calculated by these simple formulas, the derailment quotient and wheel unloading ratio were estimated to be within the safety criteria. In the actual test, no derailment occurred and the measured acceleration satisfied the criteria. Also, there was no interference between the wheel and track. The video monitoring results showed no signs of derailment, such as the climbing of the wheel. The pinion in the center showed good running safety, contacting smoothly with the rack. The measurements of environmental noise proved that the criteria were satisfied.

Development and performance evaluation of traction system for steep gradient and sharp curve track (급구배 및 급곡선 궤도 추진시스템 개발 및 성능 평가)

  • Seo, Sungil;Mun, Hyung-Suk;Moon, Ji-Ho;Suk, Myung-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.493-501
    • /
    • 2016
  • In this study, core technologies of a traction system on a mountain tram operating on the track of mountain road full of sharp curves and steep gradients were developed. In domestic mountain resort areas, sometimes the transportation service is not provided in winter because of ice and heavy snow on roads, so a mountain railway service independent of the climate and geographic conditions is needed. A traction system was designed taking into account of the power of a traction motor to climb the gradient of 120 ‰, which is common in domestic mountainous areas. and power transmission system was designed to consider the installation space for the traction system. In addition, a reduction gear and a propeller shaft were developed. An elastic pinion was developed and applied to the rack & pinion bogie system for steep gradient so that noise and vibration generated by contact between the steel gears could be reduced. Impact comparison tests showed that the vibration level of the elastic pinion is one-third lower than that of previous steel pinion. Independent rotating wheels and axles were developed for the bogie system to operate on the sharp curve of a 10 meter radius. In addition, the band braking system was developed to enhance the braking force during running on the steep gradient. A test for the braking force showed it exerts the required braking force. The performance of the developed core components were verified by the tests and finally they were applied to the bogie system running on the track of steep gradient and sharp curve.