• Title/Summary/Keyword: 금형 변형

Search Result 216, Processing Time 0.02 seconds

A Convergent Investigation on the Structural Analysis of Leaf Spring at Large Truck (대형트럭에서의 판스프링의 구조해석에 관한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.155-159
    • /
    • 2020
  • In this study, the structural analyses were performed on the number of leaf springs in large truck. The deformations were small for all four models. The maximum stress of model A was found to be the largest, and that of model D was the smallest. Model A was seen about 1.87 times larger than model D and about 1.52 times larger than model B. The maximum stresses of models C and D were seen to be less. In terms of the effect to reinforce one more overlapping spring, The effect of the enhancement of the strength of model D was shown to be small by comparing with model C. Therefore, model C with three overlapping springs is thought to be efficient in design and good in strength. The structural strength of leaf spring can be evaluated by applying this study result to the leaf spring at large truck. And it is seen that the result can be the design of the leaf spring with durability at large truck and the aesthetic convergence.

A Study on the Experimental and Theoretical Analysis About the Elastic Deflections of Die for Cold Forging (냉간 단조용 금형의 탄성 변형에 관한 실험 및 이론적 연구)

  • 이영선;이대근;이정환
    • Transactions of Materials Processing
    • /
    • v.11 no.2
    • /
    • pp.171-178
    • /
    • 2002
  • The elastic deflections of the cold forging die influence the dimensional accuracy of forged parts. The die dimension is continuously changed during the loading, unloading, and ejecting stage. In this paper, we evaluated the elastic deflections of cold forging die during the loading, unloding and ejecting stage with experimental and FEM analysis. Uni-axial strain gages are used to measure elastic strain of die during each forging stage. Strain gages are attached un the upper surface of die. A commercial F.E.M. code, DEFORM$-2D^{TM}$ is used to predict the elastic strains of die, to be compared those by experiments. Two modelling approaches are used to define the reasonable analysis method. The first of the two modelling approaches is to regard the die as rigid body over forging cycle. And then, the die stress is analyzed by loading the die with pressure from the deformed part. The other is to regard the die as elastic body from forging cycle. The elastic strain of tool is calculated and the tool is elastically deformed at each strep. The calculated results under the elastic die assumption are well agreed wish experimental data using the strain gages.

Prediction of Dimensions of Cold Forgings Considering Springback of Material and Elastic Deformation of Die (소재의 탄성회복과 금형의 탄성변형을 고려한 냉간단조품의 치수 예측)

  • Jun B. Y.;Kang S. M.;Park J.M.;Lee M. C.;Park R. H.;Joun M. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.423-431
    • /
    • 2005
  • In this paper, a systematic attempt for estimating geometric dimensions of cold forgings is made by finite element method and a practical approach is presented. In the approach, the forging process is simulated by a rigid-plastic finite element method under the assumption that the die is rigid. With the information obtained from the forging simulation, die structural analysis and springback analysis of the material are carried out. In the springback analysis, both mechanical load and thermal load are considered. The mechanical load is applied by unloading the forming load elastically and the thermal load is by cooling the increased temperature due to the plastic work to the room temperature. All the results are added to predict the final dimensions of the cold forged product. The predicted dimensions are compared with the experiments. The comparison has revealed that predicted results are acceptable in the application sense.

Frictional Effects on the Deformation Behavior of materials and Die during Equal Channel Angular Pressing(ECAP) with Pure-Zr (Pure-Zr의 ECAP공정에서 마찰이 재료의 변형거동과 금형에 미치는 영향)

  • Kwon, G. H.;Chae, S. W.;Kwon, S. I.;Kim, M. H.;Hwang, S. K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.182-187
    • /
    • 2001
  • Much research efforts have been made on the equal-channel angular pressing(ECAP)that produces ultra-fine grain size materials. Recently many materials have been tested for ECAP process, and in this paper pure-Zirconium is considered due to its applicability to nuclear reactors. Among many process parameters of ECAP, frictional effects on the deformation behavior of materials and on the stress distribution of die have been investigated. The finite element method has been employed in order to investigate this issue, and experiments have also been made to verify the numerical results.

  • PDF

Die System for Avoiding Thickness Reduction along the Bent Corner in Warm Plate Forging of an Axle Housing (액슬하우징의 온간 후판단조에서 굽힘 변형된 모서리에서 발생하는 두께 감소 방지를 위하여 고안된 금형 시스템)

  • Kim, J.S.;Kim, K.S.;Shim, S.H.;Eom, J.G.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.447-451
    • /
    • 2010
  • In this paper, a useful die system for warm plate forging of a large axle housing of heavy-duty trucks is presented. A die system composed of material flow guide pin as well as upper die and lower die is proposed to reduce the inherent thickness reduction along the bent corner of the product which deteriorates structural strength and fatigue life in its service. The role of the pin assembled in the upper die is to prevent formation of sharp corner in early forming stage and to supply material in the lower die cavity sufficient enough to thicken the bent corner at the final stroke. The mechanism of the die system is given and its effect on corner thickness of the product is revealed by two-dimensional finite element analysis under plain strain assumption. Three-dimensional finite element solutions are also given to verify validity of the two dimensional approach and to show the mechanics of the die system in detail. The die system has been successfully applied to manufacturing the axle housing of heavy-duty trucks.

The Effect of Chamber Bottom Shape on Die Elastic Deformation and Process in Condenser Tube Extrusion (접합실 바닥형상이 컨덴서 튜브 직접압출 공정 및 금형탄성변형에 미치는 영향)

  • Lee, Jung-Min;Kim, Byung-Min;Jung, Young-Deuk;Cho, Hoon;Cho, Hyung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.66-72
    • /
    • 2003
  • In case of hollow cylinder extrusion using porthole die, the effects of extrusion parameters-temperature, the speed of extrusion, the shape of the die and mandrel-on metal flow in porthole die extrusion of aluminum have been investigated. However, there have been few studies about condenser tube extruded by porthole die. Original metal flow of condenser tube by porthole die extrusion is similar to hollow cylinder extrusion but the estimation of metal flow for extrusion parameters is different. For example, variation of chamber length in hollow extrusion only affects the welding pressure, however, the welding chamber length in condenser tube extrusion influences to the welding pressure as well as the deflection of mandrel. This study was designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection according to angular variation in the bottom of chamber in porthole die. Estimation was carried out using finite element method in as non-steady state. Analytical results can provide useful information the optimal design of porthole die.

Study on the Design Optimization to Improve Injection Molding Performance of Plastic Regulator Rail (플라스틱 레귤레이터 레일 성형 최적화연구)

  • Lee, Haeng-Soo;Byun, Hong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5709-5715
    • /
    • 2012
  • Injection molding product is commonly used for reducing the weight of automotive vehicle, and door regulator guide rail with plastic material is also made by injection molding process. In order to improve the injection molding performance of plastic regulator guide rail, optimal molding condition is suggested by numerical simulation and DOE after obtaining the sensitivity of parameters for regulator rail manufacturing on warpage and fill time. Furthermore, multi direct gate method and optimal cooling circuit are introduced to get the uniform temperature distribution and better cooling efficiency in molding product. The effect of the proposed design on the injection molding performance is verified by the test of prototype of plastic regulator guide rail.

A Study on the share surface size deformation of Fine Blanking Process (파인블랭킹 공정에서 전단면의 크기 변형에 관한 연구)

  • Lee, Chun-Kyu;Kim, Young-Choon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3650-3655
    • /
    • 2013
  • A state purpose to produce fine blanking die gets to be the maximum size of share surface the study considered that change a size of share area. the clearance affecting most greatly size of share surface fixing as 1% of material thickness and while change share speed, A distance change from share line to V-ring center, A change of V-ring angle. it designed. Each test specimen taken from the share surface size analysis of the V-ring distance of 2mm, the outer $45^{\circ}$ / inner$30^{\circ}$ if the, Shear speed was found that the area of the entire cross section is largest the 6.4m/min.

Modeling of Void growth in partial Frame Process (PFP성형공정의 기포성장에 관한 모델링)

  • 안경현
    • The Korean Journal of Rheology
    • /
    • v.8 no.3_4
    • /
    • pp.207-214
    • /
    • 1996
  • 사출성형은 많은 장점과 유용성에도 불구하고 싱크마크나 휨과 같은 변형문제를 피 하기 어렵다. 이것은 성형품의 부위별 온도분포 및 냉각속도 차이에 의한 잔류응력에 기인 하는 것으로 구조가 복잡하거나 크기가 쿤 경우에 더욱 더 문제가 되기 쉽다. 이와 같은 문 제를 해결하기 위하여 성형품의 내부에 기포를 형성시켜 수지의 수축분을 기포의 성장으로 보상하여 주는 가스사출성형이 개발되어 많이 활용되고 있는 실정이다. 한편 일반 가스성형 과 달리 수지를 완전히 채운후 저압의 공기를 이용하여 기포를 발생시켜 수지의 체적수축분 을 보상해주는 PFP성형기술은 가스사출의 나점인 공기의 유동조절문제를 해결하고 비용이 저렴한 등의 잇점을 가지고 있다. 이 과정은 가스성형공정의 2차 침투과정과 매우 유사하나 아직까지 이에대한 이해나 연구는 매우 부족한 실정이다 본 연구는 기포의 성장이 수지의 체적수축에 의한 것이라는 가정에 근거하여 기포성장길이에 관한 모델링을 수행한 것이다. 실험결과와의 비교를 통하여 기본 가정에 대한 타당성을 검증하고 여러 인자들의 영향을 살 펴보았다. 본 연구는 PFP성형공정에 대한 이해를 증진시켜 금형설계 및 성형조건 설정에 대한 가이드라인을 제시하며 아울러 PFP공정에 대한 보다 체계적인 이해 및 일반가스성형 의 2차 침투과정 등의 관련 현상에 대한 이해 및 연구에 도움이 될것으로 기대된다.

  • PDF

A Study on Injection Molding Analysis of a Plastic Rack Gear (플라스틱 랙기어의 사출성형 해석에 관한 연구)

  • Kim, Hyung-Kook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.50-55
    • /
    • 2020
  • This study investigates the injection molding of a plastic rack gear and focuses on deflections in the part. The causes of deflections were found and resolved through a trade-off study by injection molding analysis. Based on a warpage analysis, the fiber orientation was found to be a dominant factor in the occurrence of deflections. Changes in the part design and various injection conditions were analyzed for their effects in reducing deflections. Based on the trade-off study, a new part bottom design, injection time, and melt temperature were recommended. A trial injection was done for the new plastic rack gear, and measurements showed that its flatness surpassed that of the original part and met the specified requirement. The short injection time, low melt temperature, and symmetric similar configuration of the part contributed to the reduction in deflections. Therefore, optimized gate design and injection conditions as well as a new part design were validated through injection molding analysis in this study.