• Title/Summary/Keyword: 금형부품

Search Result 260, Processing Time 0.026 seconds

A study on machining method about molybdenum alloy micro fixing part for TEM precision specimen. (TEM 정밀 시편 제작용 몰리브덴 합금 미세 고정 부품의 제작을 위한 절삭 가공 방법에 관한 연구)

  • Kim, Ki-Beom;Lee, Chang-Woo;Lee, Hae-Jin;Ham, Min-Ji;Kim, Gun-Hee
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.19-24
    • /
    • 2017
  • In these days, increase requirement of TEM (Transmission Electro Microscope) in not only scientific field but also industrial field. Because TEM can measure inner-structure of specimen a variety of materials like metal, bio. etc. When use TEM, specimen should be thin about 50nm. So making for thin specimen, use Ion milling device that include specimen holder. The holder generally made of Aluminium Aluminium holder is worn away easily. For this reason, using time of ion milling with aluminum holder is too short. To solve the problem, we replace aluminium holer to molybdenum alloy holder. In this paper, we design molybdenum alloy holer for CAM and modify CAD modeling for effective machining process. So we array a specimen 3 by 4 and setup orientation for one-shot machining process. Next we make a CAM program for machining. we making a decision two machining strategy that chose condition of tool-path method, step-down, step-over. etc. And then conduct machining using CNC milling machining center. To make clear difference between case.1 and case.2, we fixed machining conditions like feed-rate, main spindle rpm, etc. After machining, we confirm the condition of workpiece and analysis the problems case by case. Finally, case.2 work piece that superior than case.1 cutting with WEDM because that method can not ant mechanical effect on workpiece.

Development of Two-Shot Injection-Compression Soft Instrument Panel (2샷 사출 압축 소프트 인스트루먼트 패널 개발)

  • Kong, Byung-Seok;Park, Dong-Kyou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.638-643
    • /
    • 2019
  • In order to reduce the cost and weight of the soft-foamed instrument-panel (IP), it was developed the new IP which is made by the two kinds of injection methods. One is the compression-injection with back-foamed foil inserted, and the other is two-shot injection with the passenger airbag door. We named it 'IMX-IP' which means that all components ('X') of the IP with different resins are made in a mold. The development procedure of this technology was introduced (1) Design of the new injection mold through TRIZ method, (2) Optimization of the injection conditions and back foamed-foil for minimizing the foam loss and thickness deviation, (3) Development of CAE for two-shot injection compression, (4) Reliability performance test and application to the mass production. The reduction of the processes through the two-shot injection with back foamed-foil inserted made it possible to enhance soft feeling on IP and reduce the cost and weight simultaneously.

A Study on Structural Characteristics of Axial Fans Operating Speed Using Finite Element Analysis (유한요소해석을 이용한 축류팬 운전속도별 구조특성에 대한 연구)

  • Kook, Jeong-Keun;Cho, Byung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.593-601
    • /
    • 2021
  • The axial fan is an element of a blower used for ventilation in various industrial fields. Many studies on aerodynamic performance have been conducted to assess axial fans using fluid dynamics. The subject was a large axial fan size, 1800 mm in diameter with 100 horsepower. The blower's axial fan consisted of blades, hubs, hub caps, and bosses are important components. The blade design has a great influence on the aerodynamic performance. 3D point data is extracted using an aerodynamic performance prediction program, and a 3D modeling shape is generated. The blades and hubs, which are important components, can be easily modified if processed by cutting owing to the environment in which blades and hubs are manufactured through die casting or gravity casting. In this study, the structural safety of components and the analysis results of weak areas at the rated operating speed of the axial fan were verified using the maximum stress and safety factor. The tip clearance reflected in the design was the rotation of the blade. To check whether there is interference with other components, the displacement result was derived to verify the structural safety of the axial fan.

Hot Forging Simulation of Outer Tie Rod for Reducing Forming Load (성형하중을 감소시키기 위한 아우터 타이로드의 열간 단조해석)

  • Kim, Young-Jun;An, Kyo-Jin;Lee, Kwon-Hee;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1652-1657
    • /
    • 2015
  • Recently the improvement in vehicle performance trend to increase in accordance with the weight of this part. Outer tie rod is small when compared to the other vehicle part by weight, but there is a need to reduce the weight of the outer tie rod in order to improve fuel efficiency of the vehicle. Therefore, from previous studies, a model of outer die rod is proposed using Design of Experiments and Meta model satisfying the buckling performance. Outer tie rod are manufactured through forging process, in this study, we compare the size of the forming load in accordance with the change in the moving speed through the die forging analysis of the outer tie rod on the basis of the actual molding process.

Study on the Automatic Strip Layout Design of Shield Connector (쉴드 커넥터 스트립레이아웃 자동설계에 관한 연구)

  • Lee, Dong-Chun;Yun, Jae-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.450-455
    • /
    • 2017
  • A shield connector is an automotive electrical component that is used to connect electrical wiring in a vehicle. This part is made by progressive pressing using a phosphor bronze material with high electrical conductivity. The shape of the product is not complicated, but plastic forming techniques are required, such as deep drawing and bending, as well as shearing techniques such as piercing and notching. The finite element method was used to model the process. The strip layout design stage of the progressive die makes it possible to examine the thickness change, the stability of the forming process, and the spring-back. As a result of this analysis, it is possible to predict the correction values for the tendency of cracks, wrinkles, and incomplete plastic deformation, and to identify possible problems in advance. As a countermeasure against the forming error caused by the drawing process analysis, the drawing shape was modified and applied in the process design. For effective material utilization, a 3D strip layout was designed using an optimized blank shape based on nesting. The results improve the crack stability and spring-back of shield connector products produced through progressive pressing.

Precision Grinding System for Micro Core-pin (마이크로 코어 핀 정밀 연삭 시스템)

  • Yang, Ji-Kyung;Lee, In-Cheol;Kang, Dong-Seong;Han, Bong-Seok;Han, Yu-Jin;Lee, Jung-Woo;Song, Ki-Hyeok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.50-57
    • /
    • 2017
  • In the injection molding process, a core that builds a space for a product is installed at the internal place in the mold and fabricated as the frame of the mold. In this make up, the fabricating partial form of the mold at a pin is a core pin. The core pin is finer because an injection mold produces miniaturization and integration. On the other hand, when the core is manufactured using the existing centerless grinder, it generates vibrations because of the lack of a fixed zig for a micro size workpiece. For this reason, an existing centerless grinder without a micron size fixed zig, makes a defective product due to vibration and deformation. In this study, a compact grinding system that can be installed using an existing centerless grinder was fabricated to make a micro size core pin. Using the compact grinding system, grinding experiment for core pin was carried out. The performance of the system was confirmed by measuring the surface roughness, roundness, and cylindricity.

Development of Rapid Tooling using Investment Casting & R/P Master Model (R/P 마스터 모델을 활용한 정밀주조 부품 및 쾌속금형 제작 공정기술의 개발)

  • Jeong, Hae-Do;Kim, Hwa-Young
    • Journal of Korea Foundry Society
    • /
    • v.20 no.5
    • /
    • pp.330-335
    • /
    • 2000
  • Functional metal prototypes are often required in numerous industrial applications. These components are typically needed in the early stage of a project to determine form, fit and function. Recent R/P(Rapid Prototyping) part are made of soft materials such as plastics, wax, paper, these master models cannot be employed durable test in real harsh working environment. Parts by direct metal rapid tooling method, such as laser sintering, by now are hard to get net shape, pores of the green parts of powder casting method must be infiltrated to get proper strength as tool, and new type of 3D direct tooling system combining fabrication welding arc and cutting process is reported. But a system which can build directly 3D parts of high performance functional material as metal park would get long period of system development, massive investment and other serious obstacles, such as patent. In this paper, through the rapid tooling process as silicon rubber molding using R/P master model, and fabricate wax pattern in that silicon rubber mold using vacuum casting method, then we translated the wax patterns to numerous metal tool prototypes by new investment casting process combined conventional investment casting with rapid prototyping & rapid tooling process. With this wax-injection-mold-free investment casting, we developed new investment casting process of fabricating numerous functional metal prototypes from one master model, combined 3-D CAD, R/P and conventional investment casting and tried to expect net shape measuring total dimension shrinkage from R/P pare to metal part.

  • PDF

A Development of Automation Program for Forging Die Design of Non-Axisymmetric Parts (비축대칭 부품의 단조금형 설계용 자동화 프로그램 개발)

  • Kwon, Soon-Hong;Choi, Jong-Ung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.1
    • /
    • pp.11-19
    • /
    • 2002
  • This study described computer aided die design system for cold forging of non-axisymmetric parts such as gears and splines. To design the cold forging die, an integrated approach based on a rule-base system and commercial F. E. code were adopted. This system is implemented on the personal computer and its environment is a commercial CAD package named as Auto CAD. The system includes four modules. In the initial data input module, variables which are necessary to design of die are inputted by user and die material are selected from the database according to the variables. In the analysis and redesign module, stress distribution acting on the designed die is analyzed by commercial FEM code NISA II with elastic mode. If die failure predicted, the designed die would modified in four ways to prevent die failure in both states of stress free and pressurizing. The developed system provides useful date and powerful capabilities for die design of non-axisymmetric parts.

  • PDF

Study on the characteristics of the rib mold processing using a single type of tool (싱글타입 공구를 사용한 금형리브 가공특성에 관한 연구)

  • Lee, Seung-Chul;Park, Suk-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3151-3157
    • /
    • 2013
  • Rib cutting is being used to many electronic components and small plastic products. In this study, comparison experiment on tool of flat type(2F) and single edge type(1F) was conducted. Results were as follows: Surface roughness and tool wear of straight cutting showed good results in tool with a straight structure of the Existing tool. Rib cutting of 7mm depth was shown 50% higher surface roughness of development tool than the existing tool. The cutting time varies depending on the shape of the rib. But it is three times faster compared to existing tool.

A Design of Press Die Components by Use of 3D CAD Library (3차원 CAD라이브러리를 이용한 프레스 금형 부품의 설계)

  • Park C. H.;Lee S. S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.4
    • /
    • pp.373-381
    • /
    • 2004
  • Using standard components of a press die is recognized as a way for a cost reduction and a short lead time. It also provides a way for a quick maintenance of a die under repair. It is expected to contribute to integration of CAD/CAM system for manufacturing dies in the future. This paper presents a 3D CAD library which is constructed using the standard components and is used for designing a press die. This 3D CAD library is generated by a database system made of Microsoft Access for standard components and by CATIA V5 R10 API for geometric features. The library is implemented using Visual Basic 6.0 utility of CATIA API function in the Windows NT environment. It creates a 3D model of the standard components of press die easily when a die designer inputs numerical values of geometric features and the BOM of the completely assembled parts. It also generates automatically the assembly drawing of die set by using variables for standard values of die parts. Therefore users can save the cost of time to design the press die components, and even a beginner can use this program with ease. The test results of the 3D CAD library for designing shearing and bending dies verify its usefulness and feasibility.