• Title/Summary/Keyword: 금속전극화

Search Result 178, Processing Time 0.024 seconds

Properties of the interfacial oxide and high-k dielectrics in $HfO_2/Si$ system ($HfO_2/Si$시스템의 계면산화막 및 고유전박막의 특성연구)

  • 남서은;남석우;유정호;고대홍
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.45-47
    • /
    • 2002
  • 반도체 소자의 고집적화 및 고속화가 요구됨에 따라 MOSFET 구조의 게이트 절연막으로 사용되고 있는 SiO₂ 박막의 두께를 감소시키려는 노력이 이루어지고 있다. 0.1㎛ 이하의 소자를 위해서는 15Å 이하의 두께를 갖는 SiO₂가 요구된다. 하지만 두께감소는 절연체의 두께와 지수적인 관계가 있는 누설전류를 증가시킨다[1-3]. 따라서 같은 게이트 개패시턴스를 유지하면서 누설전류를 감소시키기 위해서는 높은 유전상수를 갖는 두꺼운 박막이 요구되는 것이다. 그러므로 약 25정도의 높은 유전상수를 갖고 5.2~7.8 eV 정도의 비교적 높은 bandgap을 갖으며, 실리콘과 열역학적으로 안정한 물질로 알려진 HfO2[4-5]가 최근 큰 관심을 끌고 있다. 본 연구에서는 HfO₂ 박막을 실제 소자에 적용하기 위하여 전극 및 열처리에 따른 HfO₂ 박막의 미세구조 및 전기적 특성에 관한 연구를 수행하였다. 이를 위해, HfO₂ 박막을 reactive DC magnetron sputtering 방법으로 증착하고, XRD, TEM, XPS를 사용하여 ZrO₂ 박막의 미세구조를 관찰하였으며, MOS 캐패시터 구조의 C-V 및 I-V 특성을 측정하여 HfO₂ 박막의 전기적 특성을 관찰하였다. HfO₂ 타겟을 스퍼터링하면 Ar 스퍼터링에 의해 에너지를 가진 산소가 기판에 스퍼터링되어 Si 기판과 반응하기 때문에 HfO₂ 박막 형성과 더불어 Si 기판이 산화된다[6]. 그래서 HfO₂같은 금속 산화물 타겟 대신에 순수 금속인 Hf 타겟을 사용하고 반응성 기체로 O₂를 유입시켜 타겟이나 시편위에서 high-k 산화물을 만들면 SiO/sub X/ 계면층을 제어할 수 있다. 이때 저유전율을 갖는 계면층은 증착과 열처리 과정에서 형성되고 특히 500℃ 이상에서 high-k/Si를 열처리하면 계면 SiO₂층은 증가하는 데, 이것은 산소가 HfO₂의 high-k 박막층을 뚫고 확산하여 Si 기판을 급속히 산화시키기 때문이다. 본 방법은 증착에 앞서 Si 표면을 희석된 HF를 이용해 자연 산화막과 오염원을 제거한 후 Hf 금속층과 HfO₂ 박막을 직류 스퍼터링으로 증착하였다. 우선 Hf 긍속층이 Ar 가스 만의 분위기에서 증착되고 난 후 공기중에 노출되지 않고 연속으로 Ar/O₂ 가스 혼합 분위기에서 반응 스퍼터링 방법으로 HfO₂를 형성하였다. 일반적으로 Si 기판의 표면 위에 자연적으로 생기는 비정질 자연 산화막의 두께는 10~15Å이다. 그러나 Hf을 증착한 후 단면 TEM으로 HfO₂/Si 계면을 관찰하면 자연 산화막이 Hf 환원으로 제거되기 때문에 비정질 SiO₂ 층은 관찰되지 않았다. 본 실험에서는 HfO2의 두께를 고정하고 Hf층의 두께를 변수로 한 게이트 stack의 물리적 특성을 살펴보았다. 선증착되는 Hf 금속층을 0, 10, 25Å의 두께 (TEM 기준으로 한 실제 물리적 두께) 로 증착시키고 미세구조를 관찰하였다. Fig. 1(a)에서 볼 수 있듯이 Hf 금속층의 두께가 0Å일때 13Å의 HfO₂를 반응성 스퍼터링 방법으로 증착하면 HfO₂와 Si 기판 사이에는 25Å의 계면층이 생기며, 이것은 Ar/O₂의 혼합 분위기에서의 스퍼터링으로 인한 Si-rich 산화막 또는 SiO₂ 박막일 것이다. Hf 금속층의 두께를 증가시키면 계면층의 성장은 억제되는데 25Å의 Hf 금속을 증착시키면 HfO₂ 계면층은 10Å미만으로 관찰된다. 그러므로 Hf 금속층이 충분히 얇으면 플라즈마내 산소 라디칼, 이온, 그리고 분자가 HfO₂ 층을 뚫고 Si 기판으로 확산되어 SiO₂의 계면층을 성장시키고 Hf 금속층이 두꺼우면 SiO/sub X/ 계면층을 환원시키면서 Si 기판으로의 산소의 확산은 막기 때문에 계면층의 성장은 억제된다. 따라서 HfO₂/Hf(Variable)/Si 계에서 HfO₂ 박막이 Si 기판위에 직접 증착되면, 순수 HfO₂ 박막의 두께보다 높은 CET값을 보이고 Hf 금속층의 두께를 증가시키면 CET는 급격하게 감소한다. 그러므로 HfO₂/Hf 박막의 유효 유전율은 단순 반응성 스퍼터링에 의해 형성된 HfO₂ 박막의 유전율보다 크다. Fig. 2에서 볼 수 있듯이 Hf 금속층이 너무 얇으면 계면층의 두께가 두꺼워 지고 Hf 금속층이 두꺼우면 HfO₂층의 물리적 두께가 두꺼워지므로 CET나 EOT 곡선은 U자 형태를 그린다. Fig. 3에서 Hf 10초 (THf=25Å) 에서 정전 용량이 최대가 되고 CET가 20Å 이상일 때는 high-k 두께를 제어해야 하지만 20Å 미만의 두께를 유지하려면 계면층의 두께를 제어해야 한다.

  • PDF

MOF-based membrane encapsulated ZnO nanowires for H2 selectivity (MOF 기반 멤브레인 기능화된 ZnO 나노선의 수소 가스 선택성)

  • Kim, Jae-Hun;Lee, Jae-Hyeong;Kim, Jin-Yeong;Kim, Sang-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.106-106
    • /
    • 2017
  • 가스센서는 사내 및 산업 환경에서의 유독성 또는 폭발성 가스 검출, 환경 모니터링, 질병 진단 등 매우 다양한 응용분야에서 큰 관심을 가지고 있다. 반도체 금속산화물(SMOs) 기반의 센서 분야에서는 이들의 감도 및 선택성을 향상시키기 위해 많은 노력을 기울이고 있다. 이는 센서의 선택성을 부여하게 되면 다양한 가스들이 존재하는 환경에서도 검출자가 원하는 가스만의 응답을 얻을 수 있기 때문이다. 본 연구에서는 MOF(Metal-Organic Framwork) 기반 멤브레인으로 ZIF-8(Zeolitic Imidazolate Frameworks 구조들 중 하나) 멤브레인 쉘 층을 이용하여 ZnO 나노선에 형성하였다. ZnO 나노선은 VLS공정 (Vapor-Liquid-Solid)을 이용하여 패턴된 전극을 갖는 $SiO_2$-grown Si 웨이퍼 상에 성장되었고, 성장된 ZnO 나노선은 2-methyl imidazole과 methanol이 포함된 고용체에 넣고 폐쇄된 압력용기 속에서 가열시켜 얻게 된다. 이렇게 얻어진 ZIF-8@ZnO 나노선의 ZIF-8 멤브레인은 분자 체 구조(molecular sieving structure)를 갖게 되며, 이들의 pore 크기는 약 $3.4{\AA}$을 갖는다. 따라서 이보다 더 큰 동적 직경을(kinetic diameter) 갖는 가스 종은 이 멤브레인을 통과할 수 없음을 나타내므로 제작된 시편은 $H_2$(kinetic diameter : $2.89{\AA}$), $C_7H_8$(kinetic diameter : $5.92{\AA}$), 그리고 $C_6H_6$(kinetic diameter : $5.27{\AA}$) 가스들을 각각 사용함으로써 ZIF-8@ZnO 나노선의 센서 특성을 조사했으며, 보다 정확한 비교를 위해 순수한 ZnO 나노선 역시 동일한 조건에서 측정되었다. 결과를 통해, 수소 가스를 제외한 다른 가스들에 대해서는 반응을 하지 않고, 오직 수소 가스에 대해서만 반응을 나타냈으며, 순수 ZnO 나노선의 수소 감응도보다 낮은 감응도를 나타내었다. 이는 멤브레인 쉘 층을 형성함으로써 ZnO 나노선의 표면적이 감소해 가스 분자와의 접촉점을 감소시키기 때문이라고 판단된다. 이와 같은 MOF 멤브레인의 캡슐화 전략은 가스센서뿐 아니라 바이오 센서 및 광촉매 등과 같은 이온 선택성을 필요로 하는 다양한 응용분야에 적용될 수 있을 것으로 기대된다.

  • PDF

High crystallization of ultra-thin indium tin oxide films prepared by reactive sputtering with post-annealing (반응성 스퍼터링으로 제조한 ITO 초박막의 후 열처리에 따른 고 결정화)

  • Lee, Ho-Yun;Kim, Seo-Han;Song, Pung-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.128-128
    • /
    • 2018
  • 최근 디스플레이 기술은 보다 가볍고, 얇고, 선명한 스마트 형태로 발전되고 있다. 특히 스마트산업의 성장으로 터치스크린패널(Touch Screen Panel, TSP)을 사용하는 기술이 다양해짐에 따라 더 높은 감도와 해상도를 달성하기 위한 핵심기술이 필요한 실정이다. TSP는 저항막 방식, 정전용량 방식, 적외선 방식, 초음파 방식 등 다양한 방식이 있다. 그 중 정전용량방식 터치 패널 (Capacitive type touch panel, CTTP)은 다른 유형에 비해 빠른 반응속도 및 멀티 터치 기능 등의 이점을 가지고 있기 때문에 연구의 초점이 되고 있다. 이를 실현하기 위해서 CTTP은 가시광영역의 높은 투과율과 낮은 비저항을 필요로 하기 때문에 박막의 초 슬림화 및 고 결정화도가 선행되어야만 한다. CTTP에 사용되는 투명전극 소재 중에서 40%의 비중을 차지하고 있는 ITO박막은 내구성과 시인성이 좋으나 생산 비용이 비싸다는 단점이 있다. 한편, 반응성 스퍼터링은 기존에 단일 소결체를 사용한 DC마그네트론 스퍼터링법보다 높은 증착률과 낮은 생산 비용으로 초박막을 만들 수 있다는 장점을 가진다. 본 실험에서는 In/Sn (2wt%) 금속 합금 타깃을 사용한 반응성 스퍼터링법을 이용하여 기판 온도 (RT 및 $140^{\circ}C$)에서 두께 30 nm의 In-Sn-O (ITO)박막을 증착하고, 대기 중 $140^{\circ}C$ 온도에서 시간에 따라 열처리한 후 박막의 물성을 관찰하였다. 증착 중 기판 가열을 하지 않은 ITO 박막의 경우, 열처리 시간이 증가함에 따라 비저항은 감소하였고, 홀 이동도는 현저하게 증가하였으며 캐리어 밀도에서는 별다른 차이가 없었다. 이를 통해 비저항의 감소는 캐리어 농도보다는 결정화를 통한 이동도의 증가와 관련 있다는 것을 확인할 수 있었다. 열처리 시간에 따른 박막의 핵 생성 및 결정 성장은 투과 전자 현미경(TEM)으로 명확하게 확인하였으며, 완전 결정화 된 박막의 grain size는 300~500 nm로 확인되었다. 기판온도 $140^{\circ}C$에서 증착한 박막의 경우, 후 열처리를 하지 않은 상태에서도 이미 결정화 된 것을 확인할 수 있었으며, 후 열처리 시에도 grain size에는 큰 변화가 없었다. 이는 증착 중에 박막의 결정화가 이미 완결된 것으로 판단된다. 또한, RT에서 증착한 박막의 경우에는 후 열처리 초기에는 산소공공등과 같은 결함들의 농도가 감소하여 투과율이 증가하였으나 완전한 결정화가 일어난 후에는 투과율이 약간 감소한 것을 확인할 수 있었다. 이는 결정화 시 박막의 표면 조도가 증가하였고 이로 인해 빛의 산란이 증가하여 투과율이 감소한 것으로 판단된다. 이러한 결과로 반응성 스퍼터링 공정으로 제조한 ITO 초박막은 후열처리에 의한 완전한 결정화를 이룰 수 있으며, 이를 통해 얻은 낮은 비저항과 높은 투과율은 고품질 TSP에 적용될 가능성을 가진다고 판단된다.

  • PDF

Synthesis and Characterization of Non-precious Metal Co-PANI-C Catalysts for Polymer Electrolyte Membrane Fuel Cell Cathodes (고분자 전해질 연료전지 캐소드용 코발트-폴리아닐린-탄소로 구성된 비귀금속 촉매의 제조 및 특성 평가)

  • Choi, Jong-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.1
    • /
    • pp.52-58
    • /
    • 2013
  • In order to overcome the cost issue for commercialization of polymer electrolyte membrane fuel cell (PEMFC), this research was conducted for replacing platinum cathode catalyst with non-precious metal catalyst. The non-precious metal catalyst (Co-PANI-C) was synthesized by the simple reduction method with polyaniline (PANI), carbon black, and cobalt precursor without any heat treatment. Characterization of new Co-PANI-C composite catalysts was done by the measurement of X-ray diffraction (XRD) and thermogravimetric analysis (TGA) for structure analysis and performed by rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) for electrochemical analysis. As a result, Co-PANI-C catalyst showed 60 mV lower on-set potential for oxygen reduction reaction (ORR) than Pt/C catalyst, but the overall reduction current of Co-PANI-C catalysts by ORR was still smaller than that of Pt/C. In addition, the ORR behavior of Co-PANI-C catalysts depending on the rotation speed of electrode and the stability of Co-PANI-C catalyst under potential cycling and the performance of fuel cell conditions are also discussed.

고주파 스퍼터링법으로 증착한 ZnO 박막의 응력 형성

  • 곽상현;이재빈;김형준
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.193-193
    • /
    • 2000
  • 박막 내의 잔류 응력은 막의 기계적 전기적 물성을 변화시키는 등 박막에 많은 영향을 끼치는 것으로 알려져 있다. 이러한 응력은 박막의 증착 공정중 여러 가지 증착 조건에 의해서 변화하게 되는데, 특히 스퍼터링 시스템의 경우에는 증착 압력과 사용하는 가스, 인가되는 전력 등 기본적인 증착조건들에 상당한 영향을 받는다. 이러한 영향은 금속 박막의 경우 상당히 잘 알려져 있다. 또한 반도체 공정에서 금속화 과정중 금속 전극의 단락등을 막기 위해 많은 연구가 진행되어 왔다. 본 논문에서는 고주파 마그네트론 스퍼터링 시스템을 사용하여 산화 아연(ZnO)을 증착하고 여러 공정 변수들에 따른 응력의 변화를 관찰하였다. 실험에서 ZnO 타겟을 사용하였으며, 작동 가스로는 아르곤과 산소를 사용하였다. 증착한 박막들은 모두 압축 응력을 보였으며, 박막의 응력에 가장 큰 영향을 미치는 요소들은 압력, 산소와 아르곤의 비, 기판과 타겟과의 거리 등이었는데, 인가 전력에는 거의 영향을 받지 않았다. 일반적으로 스퍼터링 시스템에서의 압축응력은 atomic peening에 의해서 형성되는데, 박막을 두드리는 높은 에너지의 아르곤이나 산소의 유량과 에너지의 1/2승에 비례하는 것으로 알려져 있다. 그러나 본 시스템에서는 인가 전력을 높여도 응력이 증가하지 않았고, 타겟과의 거리를 줄이면 오히려 응력이 감소함을 보였다. 이는 박막의 응력이 peening 하는 입자의 에너지뿐만이 아니라 증착되는 물질의 증착 속도와도 밀접한 관련이 있음을 보여준다. 즉, 증착속도가 증가하면 peening하는 입자가 끼치는 응력의 효과가 반감되기 때문으로 수식을 통해 증명할 수 있었다.진탄화 처리시간을 변화시켰을 때 화합물층의 생성은 ${\gamma}$'상으로부터 시작되고 $\varepsilon$상은 즉시 ${\gamma}$'상을 소모하면서 생성되어 일정시간이 지난 후 $\varepsilon$상은 안정화되며 질소가스농도가 증가할수록 화합물 층내의 $\varepsilon$상분율은 역시 증가하였다. 한편 CH4 가스농도는 처리되는 강종에 따라 차이를 보이며 적정 CH4 가스농도를 초과시에는 $\varepsilon$상 생성은 억제되고 시멘타이트상이 생성되었다.e에서 발생된 질소 플라즈마를 구성하는 이온들의 종류와 그 구성비율을 연구하였다.여러 가지 응용으로의 가능성을 가지고 있다. 그 예로 plasma processing, plasma wave에 의한 입자 가속, 그리고 가스 레이저 활성 매질 발생 등이 있다. 특히 plasma processing의 경우 helicon plasma는 높은 밀도, 비교적 낮은 자기장, remote operation 등이 가능하다는 점에서 현재 연구가 활발히 진행되고 있다. 상업용으로도 PMT와 Lucas Signatone Corp.에 서 helicon source가 제작되었다. 또한 높은 해리율을 이용하여 저유전 물질인 SiOF의 증착에서 적용되고 있다. 이 외에도 다수의 연구결과들이 발표되었다. 잘 일치하였다.ecursor 분자들이 큰 에너지를 가지고 기판에 유입되어 치밀한 박막이 형성되었기 때문으로 사료된다.을수 있었다.보았다.다.다양한 기능을 가진 신소재 제조에 있다. 또한 경제적인

  • PDF

Stabilization of LiMn2O4 Electrode for Lithium Secondary Battery(I) - Electrode Characteristics on the Substitution of Metal Oxides in LiMn2O4 Cathode Material - (리튬이차전지용 정극활물질 LiMn2O4의 안정화(I) - LiMn2O4에 대한 금속산화물의 치환에 따른 전극 특성 -)

  • Lee, Jin-Sik;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.774-780
    • /
    • 1998
  • For the stabilization of the spinel structured $LiMn_2O_4$, a fraction of manganese was substituted with various metals such as Mg, Fe, V, W, Cr, Mo with Mn that had a similar ionic radii ($LiM_xMn_{2-x}O_4(0.05{\leq}x{\leq}0.02)$). The $LiM_xMn_{2-x}O_4$ showed a substantial improvement as lower capacity loss than that of the spinel structured $LiMn_2O_4$ when it was used as a cathode material. And with the partial substitution, the chemical diffusion coefficient for $LiMg_{0.05}Mn_{1.9}O_4$ and $LiCr_{0.1}Mn_{1.9}O_4$ was increased by and order of magnitude compared to that of the $LiMn_2O_4$ with spinel structure. The results showed that significant improvement can be made on the electrochemical characteristics as the structure of the $LiMn_2O_4$ electrode material was stabilized by the partial substitution.

  • PDF

A Review on the Deposition/Dissolution of Lithium Metal Anodes through Analyzing Overpotential Behaviors (과전압 거동 분석을 통한 리튬 금속 음극의 전착/탈리 현상 이해)

  • Han, Jiwon;Jin, Dahee;Kim, Suhwan;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • Lithium metal is the most promising anode for next-generation lithium-ion batteries due to its lowest reduction potential (-3.04 V vs. SHE) and high specific capacity (3860 mAh/g). However, the dendritic formation under high charging current density remains one of main technical barriers to be used for commercial rechargeable batteries. To address these issues, tremendous research to suppress lithium dendrite formation have been conducted through new electrolyte formulation, robust protection layer, shape-controlled lithium metal, separator modification, etc. However, Li/Li symmetric cell test is always a starting or essential step to demonstrate better lithium dendrite formation behavior with lower overpotential and longer cycle life without careful analysis. Thus, this review summarizes overpotential behaviors of Li/Li symmetric cells along with theoretical explanations like initial peaking or later arcing. Also, we categorize various overpotential data depending on research approaches and discuss them based on peaking and arcing behaviors. Thus, this review will be very helpful for researchers in lithium metal to analyze their overpotential behaviors.

Electrochemical Characteristics of Cu3Si as Negative Electrode for Lithium Secondary Batteries at Elevated Temperatures (리튬 이차전지 음극용 Cu3Si의 고온에서의 전기화학적 특성)

  • Kwon, Ji-Y.;Ryu, Ji-Heon;Kim, Jun-Ho;Chae, Oh-B.;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.116-122
    • /
    • 2010
  • A $Cu_3Si$ film electrode is obtained by Si deposition on a Cu foil using DC magnetron sputtering, which is followed by annealing at $800^{\circ}C$ for 10 h. The Si component in $Cu_3Si$ is inactive for lithiation at ambient temperature. The linear sweep thermammetry (LSTA) and galvano-static charge/discharge cycling, however, consistently illustrate that $Cu_3Si$ becomes active for the conversion-type lithiation reaction at elevated temperatures (> $85^{\circ}C$). The $Cu_3Si$ electrode that is short-circuited with Li metal for one week is converted to a mixture of $Li_{21}Si_5$ and metallic Cu, implying that the Li-Si alloy phase generated at 0.0 V (vs. Li/$Li^+$) at the quasi-equilibrium condition is the most Li-rich $Li_{21}Si_5$. However, the lithiation is not extended to this phase in the constant-current charging (transient or dynamic condition). Upon de-lithiation, the metallic Cu and Si react to be restored back to $Cu_3Si$. The $Cu_3Si$ electrode shows a better cycle performance than an amorphous Si electrode at $120^{\circ}C$, which can be ascribed to the favorable roles provided by the Cu component in $Cu_3Si$. The inactive element (Cu) plays as a buffer against the volume change of Si component, which can minimize the electrode failure by suppressing the detachment of Si from the Cu substrate.

Electrolytic Reduction of 1 kg-UO2 in Li2O-LiCl Molten Salt using Porous Anode Shroud (Li2O-LiCl 용융염에서의 다공성 양극 슈라우드를 이용한1kg 우라늄산화물의 전해환원)

  • Choi, Eun-Young;Lee, Jeong;Jeon, Min Ku;Lee, Sang-Kwon;Kim, Sung-Wook;Jeon, Sang-Chae;Lee, Ju Ho;Hur, Jin-Mok
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.3
    • /
    • pp.121-129
    • /
    • 2015
  • The platinum anode for the electrolytic reduction process is generally surrounded by a nonporous ceramic shroud with an open bottom to offer a path for $O_2$ gas produced on the anode surface and prevent the corrosion of the electrolytic reducer. However, the $O^{2-}$ ions generated from the cathode are transported only in a limited fashion through the open bottom of the anode shroud because the nonporous shroud hinders the transport of the $O^{2-}$ ions to the anode surface, which leads to a decrease in the current density and an increase in the operation time of the process. In the present study, we demonstrate the electrolytic reduction of 1 kg-uranium oxide ($UO_2$) using the porous shroud to investigate its long-term stability. The $UO_2$ with the size of 1~4mm and the density of $10.30{\sim}10.41g/cm^3$ was used for the cathode. The platinum and 5-layer STS mesh were used for the anode and its shroud, respectively. After the termination of the electrolytic reduction run in 1.5 wt.% $Li_2O-LiCl$ molten salt, it was revealed that the U metal was successfully converted from the $UO_2$ and the anode and its shroud were used without any significant damage.

A Review on Ultrathin Ceramic-Coated Separators for Lithium Secondary Batteries using Deposition Processes (증착 기법을 이용한 리튬이차전지용 초박막 세라믹 코팅 분리막 기술)

  • Kim, Ucheol;Roh, Youngjoon;Choi, Seungyeop;Dzakpasu, Cyril Bubu;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.134-153
    • /
    • 2022
  • Regardless of a trade-off relationship between energy density and safety, it is essential to improve both properties for future lithium secondary batteries. Especially, to improve the energy density of batteries further, not only thickness but also weight of separators including ceramic coating layers should be reduced continuously apart from the development of high-capacity electrode active materials. For this purpose, an attempt to replace conventional slurry coating methods with a deposition one has attracted much attention for securing comparable thermal stability while minimizing the thickness and weight of ceramic coating layer in the separator. This review introduces state-of-the-art technology on ceramic-coated separators (CCSs) manufactured by the deposition method. There are three representative processes to form a ceramic coating layer as follows: chemical vapor deposition (CVD), atomic layer deposition (ALD), and physical vapor deposition (PVD). Herein, we summarized the principle and advantages/disadvantages of each deposition method. Furthermore, each CCS was analyzed and compared in terms of its mechanical and thermal properties, air permeability, ionic conductivity, and electrochemical performance.