• Title/Summary/Keyword: 금속전극화

Search Result 180, Processing Time 0.028 seconds

Comparison of Characteristics of Electrodeposited Lithium Electrodes Under Various Electroplating Conditions (다양한 전착조건에서 제작된 리튬 전극의 특성 연구)

  • Lim, Rana;Lee, Minhee;Kim, Jeom-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.128-137
    • /
    • 2019
  • A lithium is the lightest metal on the earth. It has some attractive characteristics as a negative electrode material such as a low reduction potential (-3.04 V vs. SHE) and a high theoretical capacity ($3,860mAh\;g^{-1}$). Therefore, it has been studied as a next generation anode material for high energy lithium batteries. The thin lithium electrode is required to maximize the efficiency and energy density of the battery, but the physical roll-press method has a limitation in manufacturing thin lithium. In this study, thin lithium electrode was fabricated by electrodeposition under various conditions such as compositions of electrolytes and the current density. Deposited lithium showed strong relationship between process condition and its characteristics. The concentration of electrolyte affects to the shape of deposited lithium particle. As the concentration increases, the shape of particle changes from a sharp edged long one to a rounded lump. The former shape is favorable for suppressing dendrite formation and the elec-trode shows good stripping efficiency of 92.68% (3M LiFSI in DME, $0.4mA\;cm^{-2}$). The shape of deposited particle also affected by the applied current density. When the amount of current applied gets larger the shape changes to the sharp edged long one like the case of the low concentration electrolyte. The combination of salts and solvents, 1.5M LiFSI + 1.5M LiTFSI in DME : DOL [1 : 1 vol%] (Du-Co), was applied to the electrolyte for the lithium deposition. The lithium electrode obtained from this electrolyte composition shows the best stripping efficiency (97.26%) and the stable reversibility. This is presumed to be due to the stability of the surface film induced by the Li-F component and the DOL effect of providing film flexibility.

The Study on Thermal Stability of Ti-Capped Ni Monosilicide (Ti-capped Ni monosilicide의 열적 안정성에 관한 연구)

  • 이근우;유정주;배규식
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.106-106
    • /
    • 2003
  • 반도체 소자의 고집적화에 따라 채널길이와 배선선 폭은 점차 줄어들고, 이에 따라 단채널효과, 소스/드레인에서의 기생저항 증가 및 게이트에서의 RC 시간지연 증가 등의 문제가 야기되었다. 이를 해결하기 위하여 자기정렬 실리사이드화(SADS) 공정을 통해 TiSi2, CoSi2 같은 금속 실리사이드를 접촉 및 게이트 전극으로 사용하려는 노력이 진행되고 있다. 그런데 TiSi2는 면저항의 선폭의존성 때문에, 그리고 CoSi2는 실리사이드 형성시 과도한 Si소모로 인해 차세대 MOSFET소자에 적용하기에는 한계가 있다. 반면, NiSi는 이러한 문제점을 나타내지 않고 저온 공정이 가능한 재료이다. 그러나, NiSi는 실리사이드 형성시 NiSi/Si 계면의 산화와 거침성(roughness) 때문에 높은 누설 전류와 면저항값, 그리고 열적 불안정성을 나타낸다. 한편, 초고집적 소자의 배선재료로는 비저항이 낮고 electro- 및 stress-migration에 대한 저항성이 높은 Cu가 사용될 전망이다. 그러나, Cu는 Si, SiO2, 실리사이드로 확산·반응하여 소자의 열적, 전기적, 기계적 특성을 저하시킨다. 따라서 Cu를 배선재료로 사용하기 위해서는 확산방지막이 필요하며, 확산방지재료로는 Ti, TiN, Ta, TaN 등이 많이 연구되고 있다.

  • PDF

Electrocatalytic Properties of Metal-dispersed Carbon Paste Electrodes for Reagentless L-lactate Biosensors (금속이 첨가된 탄소전극의 전기화학적 특성과 이를 이용한 L-lactate 바이오센서의 개발)

  • 윤현철;김학성
    • KSBB Journal
    • /
    • v.11 no.4
    • /
    • pp.489-496
    • /
    • 1996
  • Metal dispersed carbon paste electrodes were fabricated, and their electrochemical properties were investigated. Among various metal dispersed carbons, platinum-dispersed carbon paste electrode showed most efficient electrocatalytic characteristics. The overpotential for the oxidation of NADH was significantly lowered in the platinum-dispersed carbon paste electrode, and catalytic current was also enhanced. Based on these electrocatalytic observations, L-lactate biosensor using L-lactate dehydrogenase was constructed to evaluate its performance in terms of sensitivity and stability.

  • PDF

Adsorption Kinetic Study of Ruthenium Complex Dyes onto TiO2 Anodes for Dye-sensitized Solar Cells (DSSCs) (염료감응 태양전지용 루테늄 금속착체 염료의 이산화티타늄 전극에 대한 동적 흡착 연구)

  • An, Byeong-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.929-934
    • /
    • 2011
  • The adsorption kinetic study of ruthenium complex, N3, onto nanoporous titanium dioxide ($TiO_2$) photoanodes has been carried out by measuring dye uptake in-situ. Three simplified kinetic models including a pseudo first-order equation, pseudo second-order equation and intraparticle diffusion equation were chosen to follow the adsorption process. Kinetic parameters, rate constant, equilibrium adsorption capacities and related coefficient coefficients for each kinetic model were calculated and discussed. It was shown that the adsorption kinetics of N3 dye molecules onto porous $TiO_2$ obeys pseudo second-order kinetics with chemisorption being the rate determining step. Additionally the heterogeneous surface and the pore size distribution of porous $TiO_2$ adsorbents were also discussed.

A Study on Improving Electrical Conductivity for Conducting Polymers and their Applications to Transparent Electrodes (전도성 고분자의 전기전도도 향상 연구 및 이를 이용한 투명전극 응용)

  • Im, Soeun;Kim, Soyeon;Kim, Seyul;Kim, Felix Sunjoo;Kim, Jung Hyun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.640-647
    • /
    • 2015
  • As the need for next-generation flexible electronics grows, novel materials and technologies that can replace conventional indium tin oxide (ITO) for transparent electrodes have been of great interest. Among them, a conducting polymer, especially poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS) is one of the most promising candidates because it is mechanically flexible, inexpensive, and capable of being processed in solution. Currently, there are a lot of research efforts on enhancing its electrical conductivity to the level of ITO or metal electrodes through chemical and/or physical processing. In this review article, we present various additives and pre-/post-deposition processing methods for improving the electrical conductivity of PEDOT : PSS. Some of representative reports are also introduced, which demonstrated the use of conductivity-enhanced PEDOT : PSS as transparent electrodes in electronics and energy conversion.

Electrodeposition of Copper on Porous Reticular Cathode (II) - Effect of PEG and MPS on throwing Power- (다공성 그물구조 음극을 이용한 구리 전착에 관한 연구 (II) -유기첨가제 PEG, MPS의 영향 -)

  • Lee Kwan Hyi;Lee Hwa Young;Jeung Won Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.41-46
    • /
    • 2001
  • The effect of organic additives such as PEG ind MPS on throwing power have been studied in the fabrication of porous reticular metal by electrodeposition using the mixture of cupric sulfate and sulfuric acid as electrolyte. Both the polarization test and the electrodeposition on the stacked electrodes, mean pore diameter of which was $250{\mu}m$, were performed to illustrate the behavior of throwing power quantitatively. As far as PEG was concerned, it lowered throwing power of electrodeposition on the porous electrode used in this work while the addition of MPS up to 500 ppm in electrolyte enhanced throwing power monotonously. When both MPS and PEG were added in electrolyte, the effect of MPS on throwing power was superior to that of PEG. However, the excess addition of MPS was found to cause the defect in mechanical strength of deposit layer. From the result of SEM observation, it could be concluded that less than 50 ppm of MPS in electrolyte was appropriate to avoid the breakage of deposit layer.

Photocurrent and Its Stability Enhancement of Dye-sensitized Nanoparticle $TiO_2$ Solar Cells (염료감응 나노입자 $TiO_2$ 태양전지의 광전류와 그 안정성 향상)

  • Chae Won-Weok;Kang Tae-Sik;Kim Kang-Jin
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.232-236
    • /
    • 1999
  • A solar cell based on dye-sensitized photoelectric conversion was studied by electrochemical and spec-trofluorometric methods for the purposes of enhancing its efficiency and stability of $TiO_2$ solar cells. Nanocrystalline $TiO_2$ was used to prepare photoelectrodes, and photosensitizing dyes such as malachite green oxalate, basic blue3, rhodamine B, and bromocresol purple were chosen as sensitizers. Electrochemical oxidation potentials and absorption and emission wavelengths of dyes were used to determine energy levels of the dyes. By comparing excited energy levels of the dyes with the conduction band edge potential $(E_{c,s})\;of\;TiO_2$ calculated by using the flat-band potential $(E_{fb})\;of\;TiO_2$, properties of a dye required to fabricate a high efficient photosensitizing solar cell with high short-circuit current $(J_{sc})$ were suggested. Enhanced stability of photocurrent was obtained by coating a $TiO_2|ITO$ electrode with Polypyrrole that Possibly Prevented the recombination between the conduction band electrons and oxidized dyes and suppressed the direct electrode redox reactions of dyes on ITO.

Synthesis of Several Osmium Redox Complexes and Their Electrochemical Characteristics in Biosensor (오스뮴 착물들의 합성 및 전기화학적인 특성에 관한 연구)

  • Kim, Hyug-Han;Choi, Young-Bong;Tae, Gun-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.176-183
    • /
    • 2008
  • Redox complexes to transport electrodes from bioreactors to electrodes are very important part in electrochemical biosensor industry. A novel osmium redox complexes were synthesized by the coordinating pyridine group having different functional group at 4-position with osmium metal. Newly synthesized osmium complexes are described as ${[Os(dme-bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dme-bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dmo-bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dcl-bpy)}_2{(ap-im)Cl]}^{+/2+}$. We have been studied the electrochemical characteristics of these osmium complex with electrochemical techniques such as cyclic voltammetry and chronoamperommetry. Osmium redox complexes were immobilized on the screen printed carbon electrode(SPE) with deposited gold nanoparticles. The electrical signal converts the osmium redox films into an electrocatalyst for glucose oxidation. Each catalytic currents were related with the potentials of osmium complexes.

Electrical and structural properties of back reflecting layer with AZO-Ag bilayer structure on a stainless steel substrate for thin film Si based solar cell applications (Flexible 박막 Si태양전지 응용을 위한 SUS기판 위의 AZO-Ag 이중구조 배면전극의 전기/구조적 특성)

  • Hong, ChangWoo;Choi, YoungSung;Park, Jaecheol;Lee, JongHo;Kim, TaeWon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.125.1-125.1
    • /
    • 2011
  • 빛 에너지를 전기에너지로 변환하는 발전소자인 태양전지는 청정 재생 에너지원으로 최근 Si 박막 태양전지의 고 효율화를 위해 여러 기술적인 면에서 개발되어지고 있다. 현재 박막형 태양전지는 실리콘계가 주류를 이루고 있으며, 유리 혹은 유연성기판(금속 or 고분자)에 비정질 실리콘 박막을 형성시킨 태양전지와 실리콘웨이퍼의 양면에 태양전지를 형성함으로써 효율을 극대화시킨 이종접합태양전지 등이 연구되고 있다. 특히 flexible 태양전지는 hard 기판에 비해 비교적 저가인 플라스틱 필름과 금속 foil을 기판으로 이용함으로서 저가화가 용이하며, 가볍고 유연성을 갖추고 있어 휴대와 시공에 있어 매우 우수한 장점을 가지고 있다. 본 연구에서는 flexible 기판(stainless steel)을 이용하여 태양전지 내 반사막 층이 미치는 영향을 알아보기 위하여 AZO/Ag 이중구조 박막의 특성을 연구하였다. RF magnetron sputtering system을 이용하였으며, 상온에서 Ag/AZO 이중구조 박막을 제조하였다. stainless steel 기판 위에 Ag층을 25nm 두께로 증착하였으며 연속공정으로 AZO 박막을 100~500nm의 두께경사를 가지도록 성장시켰다. 이 때의 AZO/Ag 이중구조 박막의 표면 morphology는 AFM 분석결과 7nm~3nm의 값을 나타내었으며, AZO 박막의 두께가 증가할수록 rms 값이 감소하는 경향을 보여주었다. 본 발표에서는 flexible 기판 상에 성장된 AZO/Ag 이중구조 박막의 전기적, 광학적 특성 등에 관하여 추가적으로 토론한 후 태양전지 효율 중 흡수층 내 반사막 층이 미치는 역할을 알아보겠다.

  • PDF

Synthesis of Osmium Redox Complex and Its Application for Biosensor Using an Electrochemical Method (오스뮴 착물 합성과 전기화학적인 방법을 이용한 바이오센서에 관한 연구)

  • Choi, Young-Bong;Kim, Hyug-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.150-154
    • /
    • 2007
  • Redox complexes to transport electrodes from biomaterial to electrodes are very important part in commercial biosensor industry. A novel osmium redox complex was synthesized by the coordinating pyridine group with osmium metal. A novel osmium complex is described as $[Os(dme-bpy)_2(ap-im)Cl]^{+/2+}$. We have been studied the electrochemical characteristics of this osmium complex with electrochemical techniques such as cyclic voltammetry and chronoamperommetry. In order to immobilize osmium redox complexes on the electrode, we deposited gold nano-particles on screen printed carbon electrode(SPE). The electrical signal converts the osmium redox films into an electrocatalyst for glucose oxidation. The catalytic currents were monitored that the catalytic currents were linearly increased from 1 mM to 5 mM concentrations of glucose.