• Title/Summary/Keyword: 금속단열재

Search Result 8, Processing Time 0.025 seconds

Analysis of Heat Transfer Characteristics Based on Design Factors for Determining the Internal Geometry of Metal Insulation in Nuclear Power Plant (원전용 금속단열재의 내부 형상결정을 위한 설계인자 별 열전달 특성 분석)

  • Song, Ki O;Yu, Jeong Ho;Lee, Tae Ho;Jeon, Hyun Ik;Ha, Seung Woo;Cho, Sun Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1175-1181
    • /
    • 2015
  • A heat insulating material used in the industrial site normally derives its heat insulating performance by using a low thermal conductivity material such as glass fiber. In case of the metal insulation for nuclear power plant, in contrast, only TP 304 stainless steel foil having high thermal conductivity is the only acceptable material. So, it is required to approach in structural aspect to ensure the insulation performance. In this study, the design factors related to the metal insulation internal structure were determined considering the three modes of heat transfer, i.e., conduction, convection, and radiation. The analysis of heat flow was used to understand the ratio of the heat transfer from each factor to the overall heat transfer from all the factors. Based on this study, in order to minimize the convection phenomenon caused by the internal insulation, a multiple foil was inserted in the insulation. The increase in the conduction heat transfer rate was compared, and the insulation performance under the three modes of heat transfer was analyzed in order to determine the internal geometry.

Seismic Analysis of the Reflective Metal Insulation for Thermal Shielding of Main Equipments of Nuclear Power Plants (원전 설비 열차폐를 위한 반사형 금속단열재의 내진 해석)

  • Kim, Seung-Hyeon;Rhee, Huinam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.166-172
    • /
    • 2016
  • This paper deals with the seismic qualification of the reflective metal insulation for thermal shielding that is installed on the outer surfaces of the main equipment of the primary coolant system of a nuclear power plant. A small-scale model of the reactor pressure vessel, which has equivalent dynamic characteristics, was designed to be tested in domestic seismic testing facilities in the future. In this study, seismic analysis of the small-scale model installed with metal insulation was performed using equivalent static analysis and response spectrum analysis. The required Response Spectrum for main equipment of the primary coolant system of APR-1400 plant were considered to establish the enveloping response spectrum, which was applied to the seismic analysis model. The results from two seismic analysis methods were compared to show the structural adequacy of the metal insulator design against a safe shutdown earthquake. This study will form the basis for the seismic testing to support the seismic qualification of the reflective metal insulator.

Studies on Insulation Effect Related with Thin-Plate Design Factors for Reflective Metal Insulation(RMI) of Nuclear Power Plant (금속단열재 박판의 설계인자별 단열성능 영향 연구)

  • Eo, Minhun;Lee, Sungmyung;Jang, Kyehwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.9
    • /
    • pp.350-354
    • /
    • 2016
  • Although fibrous insulations are generally used with resistive insulation type, metallic insulation is proper matter to satisfy low head-loss and equipment life when considering the specific condition, especially for Nuclear power plant. Common insulation is resistance insulation with a low thermal conductivity. but RMI is made of sheet plate with low emissivity and closed air space. Thermal radiation is blocked by stainless steel with low emissivity. Thermal conductivity and thermal convection are blocked by closed air space. This study shows the changes and effects of the heat loss according to shape and method of stacking sheet plates inserted into the insulation and analyzed the most optimized way for thermal insulation performance. The result shows that using sheet plate structure through raised and protruding shape processing was the appropriate model to optimize thermal performance. Additionally, insulating performance of RMI improved by placing the sheet plate in a high temperature region intensively.

A study on the manufacturing of motor case assembly for K-PSAM propulsion system by Trans. power molding(TPM) process (유동가압성형(TPM)을 이용한 휴대용 유도무기용 연소관 조립체 제작공정연구)

  • 정상기;윤남균
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.107-115
    • /
    • 1998
  • This paper deals with the study on injection with EPDM(Ethylene propylene dien ter polymer) the gap which narrow, long, and tubular between an ablative composite tube and a steel motor case. Small size motor assembly was designed and manufactured for man-portable air defense propulsion system. Motor assembly is consisted with steel tube, ablative composite tube and insulation rubber. Ablative composite tube was made of carbon/phenolic prepreg by rolling process and insulation rubber was made of EPDM by TPM(Trans-power molding) process. To select the insulation rubber material, we tested ablative insulation property and degradation property at first and we tested fluidity, adhesive property and hardness of EPDM rubber. Finally we designed TPM process to manufacture motor case assembly and the motor case assembly was examined by non-destructive test(X-ray).

  • PDF

Design for Strengthening Structural Integrity of the Reflective Metal Insulation in the Nuclear Power Plant (원전 금속단열재의 구조 건전성 강화를 위한 설계 방안)

  • Lee, Sung Myung;Eo, Min Hun;Kim, Seung Hyun;Jang, Kye Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.107-113
    • /
    • 2015
  • The goal of this paper is to investigate structural integrity factors of RMI(reflective metal insulation) to confirm the design requirements in nuclear power plant. Currently, a glass wool insulation is using now, but it will gradually be replaced with the reflective metal insulation maded by stainless steel plates. The main function of an insulation is to minimize a heat loss of vessel and pipes in RCS(reactor coolant system). It has to maintain structural a integrity in nuclear power plant life duration. In this study, the structural integrity analysis was carried out both multi-plate and outer shell plate by using a static analysis and experimental test. First, inner multi-plate has a self support structure for being air space. Because the effect of total static weight in multi-layer plate is low, a plate collapse possibility is not high. Considering optimum thin plate pressing process, it has to pre-check the basic physical properties. Second, the outer segment thickness and stiffener shape are verified by the numerical static analysis, and sample test for both type of panel and cylindrical pipe model.

An Experimental Study on the Pore Structure and Thermal Properties of Lightweight Foamed Concrete by Foaming Agent Type (기포제 종류에 따른 경량기포콘크리트의 기포구조 및 열적특성에 관한 실험적 연구)

  • Kim, Jin-Man;Choi, Hun-Gug;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.63-73
    • /
    • 2009
  • Recently, the use of lightweight panels in building structures has been increasing. Of the various lightweight panel types, styrofoam sandwich panels are inexpensive and are excellent in terms of their insulation capacity and their constructability. However, sandwich panels that include organic material are quite vulnerable to fire, and thus can numerous casualties in the event of a fire due to the lack of time to vacate and their emission of poisonous gas. On the other hand, lightweight foamed concrete is excellent, both in terms of its insulation ability and its fire resistance, due to its Inner pores. The properties of lightweight concrete is influenced by foaming agent type. Accordingly, this study investigates the insulation properties by foaming agent type, to evaluate the possibility of using light-weight foamed concrete instead of styrene foam. Our research found thatnon-heating zone temperature of lightweight foamed concrete using AP (Aluminum Powder) and FP (animal protein foaming agent) are lower than that of light-weight foamed concrete using AES (alkyl ether lactic acid ester). Lightweight foamed concrete using AES and FP satisfied fire performance requirements of two hours at a foam ratio 50, 100. Lightweight foamed concrete using AP satisfied fire performance requirements of two hours at AP ratio 0.1, 0.15. The insulation properties were better in closed pore foamed concrete by made AP, FP than with open pore foamed concrete made using AES.

A Study on the Flame Retardant Effect for Metal Complexes-Cellulose Hybrid Insulator (금속착물-셀룰로오스 복합 단열재의 난연 효과 연구)

  • Kim, Hong;Kang, Young-Goo
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.62-67
    • /
    • 1995
  • The combustion characteristics of cellulose Insulation treated with several metal complexes such as Aluminium hydroxide, Cupric sulfate pentahydrate, Magnesium sulfate heptahydrate, Manganese chloride tetrahydrate and Tnisodium phosphate dodecahydrate are studied to evaluate the effectiveness as a potential flame retardant for cellulosic materials. In this study, we found that LOI values of cellulosic materials treated with the metal complexes are generally increased with the increase of their content. At high concentration, CS(24% ) and SP(24% ) show high LOI values, suggesting resistance to flame spread, The materials examined in this study were found to be relatively more resistance to smouldering and flaming combustion in comparision with untreated cellulosic material. The flammability behavior of the materials exhibits combustion process as follows : LOI$\rightarrow$smouldering region$\rightarrow$smouldering-flaming spread region$\rightarrow$flame spread region.

  • PDF

A Study on the Performance of Foamed Concrete for Cores Material of Metal Vacuum Insulation Panel (금속진공단열패널의 심재용 기포콘크리트의 성능에 관한 연구)

  • Hong, Sang-Hun;Kim, Bong-Joo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.5
    • /
    • pp.417-423
    • /
    • 2020
  • In order to reduce cooling and heating, which is 40% of the energy consumption of buildings, it is important to improve the insulation of the skin. In order to improve the existing insulation, research is being conducted to apply a vacuum insulation panel(VIP) to buildings. However, VIP cannot be repaired, so we considered the metal vacuum insulation panel. Since the core of the metal vacuum pressure and have low thermal conductivity, foam concrete is adopted. However, preliminary experiments confirmed that the time to reach 0.001torr differs depending on the amount and nature of the bubbles. This effect is determined by the type of foaming agent and the density of the bubble slurry, the vacuum delivery time is determined to be the optimum foam concrete conditions are necessary. Therfore, this study aims to present basic data applicable to core materials by measuring vacuum delivery time and thermal conductivity change according to the foaming agent type and foam slurry density of foam large concrete which is core material of metal vacuum insulation panel. Experimental results and analysis show that compressive strength can be used regardless of the type of foam, In terms of thermal conductivity, it is stable to use vegetable foaming agents at 0.9g/㎤ or less. In terms of the vacuum delivery time, the foaming agent appeared similar regardless of the type of foaming agent, but it is considered suitable to use vegetable foaming agent based on compressive strength and thermal conductivity.