• Title/Summary/Keyword: 금속광산

Search Result 232, Processing Time 0.028 seconds

Soil quality assessment for cadmium uptake of Artemisia princeps at abandoned metalliferous mines using statistical analysis (폐금속 광산에 식생하는 쑥의 카드뮴 흡수 해석을 위한 통계적 토양질 평가)

  • Jo, Hun-Je;Kim, Dae-Yeon;Lee, Hyun-Joon;Oh, Hyun-Ju;Kang, Sung-Wook;Kim, Jeong-Gyu;Jung, Jin-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • Physical, chemical and biological properties of soils and cadmium(Cd) content of Artemisia princeps var. orientalis collected from 10 metalliferous mines were analysed. Cd contents of unplanted soils and rhizosphere soils were not significantly different(p < 0.05), and mean values were 5.92 and 5.91 mg/kg, respectively. In addition, Cd content of rhizosphere soils were correlated with Cd content of Artemisia princeps (p < 0.05, ${R^2}_{shoot}$ = 0.3120, ${R^2}_{root}$ = 0.4177). Minimum data set(MDS) of soil quality parameters for statistical assessment of Cd uptake was established by principal component analysis, and it was identified as organic matter(OM), dehydrogenase activity(DHA), pH, exchangeable Mg. According to multiple regression analysis using the MDS, coefficients of determination ($R^2$) for Cd uptake of shoot and root of Artemisia princeps were found to be 0.3418 and 0.5121, respectively. This suggests that statistical soil quality assessment using the MDS seems a useful tool to interpret heavy metal uptake of plant.

In-situ Precipitation of Arsenic and Copper in Soil by Microbiological Sulfate Reduction (미생물학적 황산염 환원에 의한 토양 내 비소와 구리의 원위치 침전)

  • Jang, Hae-Young;Chon, Hyo-Taek;Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.445-455
    • /
    • 2009
  • Microbiological sulfate reduction is the transformation of sulfate to sulfide catalyzed by the activity of sulfate-reducing bacteria using sulfate as an electron acceptor. Low solubility of metal sulfides leads to precipitation of the sulfides in solution. The effects of microbiological sulfate reduction on in-situ precipitation of arsenic and copper were investigated for the heavy metal-contaminated soil around the Songcheon Au-Ag mine site. Total concentrations of As, Cu, and Pb were 1,311 mg/kg, 146 mg/kg, and 294 mg/kg, respectively, after aqua regia digestion. In batch-type experiments, indigenous sulfate-reducing bacteria rapidly decreased sulfate concentration and redox potential and led to substantial removal of dissolved As and Cu from solution. Optimal concentrations of carbon source and sulfate for effective microbial sulfate reduction were 0.2~0.5% (w/v) and 100~200 mg/L, respectively. More than 98% of injected As and Cu were removed in the effluents from both microbial and chemical columns designed for metal sulfides to be precipitated. However, after the injection of oxygen-rich solution, the microbial column showed the enhanced long-term stability of in-situ precipitated metals when compared with the chemical column which showed immediate increase in dissolved As and Cu due to oxidative dissolution of the sulfides. Black precipitates formed in the microbial column during the experiments and were identified as iron sulfide and copper sulfide. Arsenic was observed to be adsorbed on surface of iron sulfide precipitate.

A Study on Leaching and Solvent Extraction for the Recovery of Copper Ore for Small-Scale Mining in Tanzania (탄자니아의 소규모 광산에서 구리광석 정제를 위한 침출 및 용매 추출에 관한 연구)

  • Soh, Soon-Young;Chun, Yong-Jin;Itika, Ambrose J.M.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.438-445
    • /
    • 2017
  • Tanzania has abundant copper deposits, but copper-metal extraction remains low there, owing to the lack of suitable copper recovery processes and insufficient funds for developing mining technologies. Accordingly, leaching and solvent extraction methods for the extraction of copper from copper ore were studied with a particular emphasis on developing a simple processing method for small-scale copper mining. Chrysocolla ore was used as the copper-bearing mineral and sulfuric acid was used as the leaching reagent. A maximum copper recovery of 95.1% was obtained when the particles in the sample were smaller than $53{\mu}m$, the concentration of 98%(w/w) sulfuric acid in the leaching solution was 5.0 g/L and the stirring rate was between 60 and 80 rpm. The highest selectivity of $Cu^2+$ in the solvent extraction was obtained using 15% LIX-70 in kerosene. In the pH range from 0.5 to 3.0, the efficiency of $Cu^2+$ extraction increased with increasing pH. However, at pH values higher than 3.0, other metal ions were extracted into the organic phase more readily than $Cu^2+$. The highest solvent extraction rate obtained was 96.5% at pH values of 2.0 and 3.0 using 15% LIX-70.

The Results of Drilling in Weondong Mine Area, the Taebaegsan Mineralized District, Republic of Korea (강원도 태백산지역 원동광산 시추탐사연구)

  • Lee, Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.44 no.4
    • /
    • pp.313-320
    • /
    • 2011
  • The Taebaegsan Mineralized District is the most prospective region for the useful mineral commodities such as a coal, non-metallic, metallic mineral in South Korea. From a general point of view, Cambro- Ordovician limestone formations, Myobong slate and Pungchon (Daegi) limestone, are the most fertilizable formations in the Taebaegsan Mineralized District. The geology around Weondong mine area consists mainly of Carboniferous-Triassic formations and Cambro-Ordovician formations intruded by rhyolite/quartz porphyry. The great overthrusted fault of N40~$50^{\circ}E$ direction, so called Weondong overthrust fault, is observed in the central part of the mine area and the NS fault system cuts the overthrusted fault. By postulating from the favorable geological and structural condition around Weondong area, the possibility of deep seated hidden ore bodies is expected. In 2010, on the basis of the results of LOTEM and CSAMT survey, the cross-hole survey was performed for the investigation of the hidden polymetallic ore body in the deep parts of the Weondong mine area and the grade of the newly-discovered orebody is as follows; (1) The cut-off grade for lead-zinc 3%; an weighted average grade 5.50% (2.7 m), (2) The cutoff grade for copper 0.1%; an weighted average grade 0.91% (14.65 m), (3) The cut-off grade for iron 30%; an weighted average grade 38.18% (3.3 m), (4) $WO_3$ for each cut-off grade(0.01%, 0.05%, 0.1%); an weighted average grade 0.29 wt. % (8.8 m), 1.15 wt. % (2.1 m), 1.97 wt. % (1.2 m), (5) $MoS_2$ for each cut-off grade(0.01%, 0.1%); an weighted average grade 0.15 wt. % (6.3S m), 0.28 wt. % (3.15 m), (6) $Ta_2O_5$ for each cut-off grade (0.01%, 0.1%); an weighted average grade 0.13% (19.S m), 1.11% (1.8 m), (7) $Nb_2O_5$ for each cut-offgrade (0.01%, 0.1%); an weighted average grade 0.06% 11.5 m), 0.15% (3.0 m).

Identifying sources of heavy metal contamination in stream sediments using machine learning classifiers (기계학습 분류모델을 이용한 하천퇴적물의 중금속 오염원 식별)

  • Min Jeong Ban;Sangwook Shin;Dong Hoon Lee;Jeong-Gyu Kim;Hosik Lee;Young Kim;Jeong-Hun Park;ShunHwa Lee;Seon-Young Kim;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.306-314
    • /
    • 2023
  • Stream sediments are an important component of water quality management because they are receptors of various pollutants such as heavy metals and organic matters emitted from upland sources and can be secondary pollution sources, adversely affecting water environment. To effectively manage the stream sediments, identification of primary sources of sediment contamination and source-associated control strategies will be required. We evaluated the performance of machine learning models in identifying primary sources of sediment contamination based on the physico-chemical properties of stream sediments. A total of 356 stream sediment data sets of 18 quality parameters including 10 heavy metal species(Cd, Cu, Pb, Ni, As, Zn, Cr, Hg, Li, and Al), 3 soil parameters(clay, silt, and sand fractions), and 5 water quality parameters(water content, loss on ignition, total organic carbon, total nitrogen, and total phosphorous) were collected near abandoned metal mines and industrial complexes across the four major river basins in Korea. Two machine learning algorithms, linear discriminant analysis (LDA) and support vector machine (SVM) classifiers were used to classify the sediments into four cases of different combinations of the sampling period and locations (i.e., mine in dry season, mine in wet season, industrial complex in dry season, and industrial complex in wet season). Both models showed good performance in the classification, with SVM outperformed LDA; the accuracy values of LDA and SVM were 79.5% and 88.1%, respectively. An SVM ensemble model was used for multi-label classification of the multiple contamination sources inlcuding landuses in the upland areas within 1 km radius from the sampling sites. The results showed that the multi-label classifier was comparable performance with sinlgle-label SVM in classifying mines and industrial complexes, but was less accurate in classifying dominant land uses (50~60%). The poor performance of the multi-label SVM is likely due to the overfitting caused by small data sets compared to the complexity of the model. A larger data set might increase the performance of the machine learning models in identifying contamination sources.

Heavy Metal Uptake of Acacia from Tailing soil in Abandoned Jangun Mine, Korea (장군광산 광미 토양으로부터 아카시아의 중금속 전이에 관한 연구)

  • Jeong, Hong-Yun;Kim, Young-Hun;Kim, Jeong-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.173-185
    • /
    • 2015
  • Janggun mine (longitude $129^{\circ}$ 03'38.91" Latitude $36^{\circ}$ 51'31.59") had been operated as an underground mine for last few decades. As the part of the remediation process, the surface of tailing dump was covered with uncontaminated soil about 20 cm in depth and acacia trees were planted. Heavy metal uptake of acacia from tailing soil has continued for the past 15 years. Heavy metal concentration ranges of tailing soil that contaminated with As (66.43-9325.34 mg/kg), Cd (0.96-1.09 mg/kg), Cu (16.90-57.60 mg/kg), Pb (57.33-945.67 mg/kg), and Zn (154.48-278.61 mg/kg) have higher than those of control soil As (38.98 mg/kg), Cd (0.42 mg/kg), Cu (10.26 mg/kg), Pb (8.21 mg/kg), Zn (46.74 mg/kg). The As, Cd, Cu, Pb and Zn concentrations of leaf of acacia in highly contaminated tailing dump were 165.95, 0.04, 10.68, 3.18, 48.11 mg/kg, respectively. The metal contents of leaf of acacia tree that obtained from uncontaminated control soil are 1.31 of As, 3.90 of Cu, 0.22 of Pb and 11.01 mg/kg of Zn. It was investigated that in the acacia tree, heavy metals such as As, Cu, Pb and Zn tend to be more highly concentrated in bark and leaf, compared with sapwood and heartwood.

Heavy Metal Distribution Patterns and Its Effect on Paddy Soils and Stream around Gubong Mine (구봉광산 주변 중금속의 분포양상 및 인근농경지와 하천수계에 미치는 영향)

  • 이도경;정덕영;이규승
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.3
    • /
    • pp.69-80
    • /
    • 1997
  • This investigation was conducted to provide information for characteristics of environmental pollution by the heavy metals from the abandoned gold mine in order to characterize the distribution patterns and environmental damages of the contaminants to the surrounding environment. Through analysis of CN, Cd, Cu, Pb, Zn, As, Cr, and Hg in a mine tailings, paddy soils, and stream sediments, the physico-chemical properties of the mine tailings and paddy soils were measured. The pH's were 5.4, 8.4 for the paddy soil and mine tailing, respectively. The maximum contents of CN, Pb, Cd, and As the in mine tailing were 99.98, 1,752.72, 31.88, and 298.50 mg/kg, respectively. The amounts of these ions were higher than the standard level of industrial area in Korea. The average content of CN and heavy metals in the paddy soils were higher than the background level of heavy metals in the unpolluted paddy soils around the mine. Especially, the contents of heavy metals in the paddy soils along the adjacent stream were higher compared to the paddy soil that was not influenced by the mine tailings. The contents of CN and heavy metals in the stream sediment close to the mine area were similar to those of the mine tailings, but decreased along the distance of the stream farther away from the tailings that was the source of these pollutants.

  • PDF

Transfer of Arsenic from Paddy Soils to Rice Plant under Different Cover Soil Thickness in Soil Amendments in Abandoned Coal Mine (폐탄광지역 비소오염 농경지(논) 개량 시 복토두께에 따른 비소의 벼 전이 및 토양용액 특성)

  • Koh, Il-Ha;Kwon, Yo Seb;Jeong, Mun-Ho;Ko, Ju In;Bak, Gwan-In;Ji, Won Hyun
    • Economic and Environmental Geology
    • /
    • v.54 no.4
    • /
    • pp.483-494
    • /
    • 2021
  • This study was carried out to investigate the feasibility of reducing clean cover soil using a flooded column test in arsenic-contaminated farmland reclamation of abandoned coal mine area that shows generally low or about worrisome level (25 mg/kg) of Korea soil environment conservation act unlike abandoned metal mine. During the monitoring period of soil solution for 4 months, chemical properties (pH, EC, ORP, Fe, Mn, Ca, and As) in each layer (clean soil cover and contaminated/stabilized soil) showed different variation. This result revealed that soil solution in stabilized or contaminated soil rarely affected that in cover soil. Whether stabilized or not, arsenic concentrations in the rice roots grown in the soil covers with the thickness of 40 cm decreased by 98% in compared with the that grown in the control soil. In case of the soil covers with 20 cm thickness on stabilized soil, it decreased by 80% and this was 22 percentage point higher than when the soil of lower layer was not stabilized. Thus, reducing clean cover soil could be possible in contaminated farmland soil reclamation if appropriate stabilization of contaminated soil is carried.

Removal of Arsenite and Arsenate by a Sand Coated with Colloidal Hematite Particl (나노 크기 적철석 입자 피복 모래를 이용한 비소 3가와 비소 5가의 제거)

  • 고일원;이상우;김주용;김경웅;이철효
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.63-69
    • /
    • 2004
  • Hematite-coated sand was examined for the application of the PRB (permeable reactive barrier) to the arsenic-contaminated subsurface in the metal mining areas. The removal efficiency of As in a batch and a flow system was investigated through the adsorption isotherm, removal kinetics and column experiments. Hematite-coated sand followed a linear adsorption isotherm with high adsorption capacity at low level concentrations of As (<1.0 mg/L). In the column experiments, high content of hematite-coated sand enhanced the removal efficiency, but the amount of the As removal decreased due to the higher affinity of As (V) than As (III) and reduced adsorption kinetics in the flow system. Therefore. the amount of hematite-coated sand, the adsorption affinity of As species and removal kinetics determined the removal efficiency of As in a flow system.

Spatial Distribution of Metal (loid) Contamination in Agricultural Soil as Affected by the Abandoned Mines: A Case Study of Buyeo County, South Korea (폐금속 광산의 영향을 받는 농경지 토양 내 금속성분 오염의 공간적 분포특성: 충청남도 부여군의 사례연구)

  • Yun, Sung-Wook;Kim, Dong-Hyeon;Kang, Dong-Hyeon;Lee, Si-Young;Son, Jinkwan;Kim, Hae-Do;Yoon, Yong-Chel;Yu, Chan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.51-60
    • /
    • 2017
  • In this study, the concentrations of As, Cd, Cu, Pb and Zn in agricultural soils across a region of South Korea (Buyeo County) were investigated. Their pollution sources were assessed using multivariate statistical analysis, and Geographic Information System (GIS) technology was used to determine the distribution of these elements. Surface soil samples were collected from 114 locations across the agricultural fields in the study site. Cu and Zn were derived from natural sources (i.e., parent rocks of the soil), whereas As, Cd, and Pb were found to be originated from abandoned mines. The results of this study clearly show that the transport of anthropogenic As, Cd, and Pb is governed mostly by the specific environment of the paddy soil. Our approach was effective in clearly identifying the sources of metals and analyzing their contamination characteristics. We believe this study will provide useful information to future studies on soil pollution by anthropogenic sources.