• Title/Summary/Keyword: 금속간화합물

Search Result 385, Processing Time 0.031 seconds

Intermetallic Compounds Growth in the Interface between Sn-based Solders and Pt During Aging (시효처리에 따른 Cu를 포함하는 Sn계 무연솔더와 백금층 사이의 금속간화합물 성장)

  • Kim Tae-Hyun;Kim Young-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.23-30
    • /
    • 2004
  • Interfacial reaction of Pb-free $Sn0.7wt{\%}Cu$ and $Sn3.8wt{\%}Ag0.7wt{\%}Cu$ solders and Pt during aging has been investigated. After the $Sn3.8wt{\%}Ag0.7wt{\%}Cu/Pt$ specimens were reflowed at $250^{\circ}C$ for 30s and the $Sn0.7wt{\%}Cu/Pt$ specimens were reflowed at $260^{\circ}C$, the specimens were aged at $125^{\circ}C,\;150^{\circ}C$ and $170^{\circ}C$ for 25-121 hours. The intermetallic thitkness and morphology change during aging were characterized using SEM, EDS and XRD. $PtSn_4$ and $PtSn_2$ were observed in the solder/pt interface and the intermetallic formation was governed by diffusion. The activation energy of intermetallic formation was 145.3 kJ/mol for$Sn3.8wt{\%}Ag0.7wt{\%}Cu/Pt$ specimens for $Sn0.7wt{\%}Cu/Pt$ specimens from the measurement of the intermetallic thickness with aging temperature and time.

  • PDF

Effect of Thermal Aging on the Intermetallic compound Growth kinetics in the Cu pillar bump (Cu pillar 범프 내의 금속간화합물 성장거동에 미치는 시효처리의 영향)

  • Lim, Gi-Tae;Lee, Jang-Hee;Kim, Byoung-Joon;Lee, Ki-Wook;Lee, Min-Jae;Joo, Young-Chang;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.15-20
    • /
    • 2007
  • Growth kinetics of intermetallic compound (IMC) at various interface in Cu pillar bump during aging have been studied by thermal aging at 120, 150 and $165^{\circ}C$ for 300h. In result, $Cu_6Sn_5\;and\;Cu_3Sn$ were observed in the Cu pillar/SnPb interface and IMC growth followed parabolic law with increasing aging temperatures and time. Also, growth kinetics of IMC layer was faster for higher aging temperature with time. Kirkendall void formed at interface between Cu pillar and $Cu_3Sn$ as well as within the $Cu_3Sn$ layer and propagated with increasing time. $(Cu,Ni)_6Sn_5$ formed at interface between SnPb and Ni(P) after reflow and thickness change of $(Cu,Ni)_6Sn_5$ didn't observe with aging time. The apparent activation energies for growth of total $(Cu_6Sn_5+Cu_3Sn),\;Cu_6Sn_5\;and\;Cu_3Sn$ intermetallics from measurement of the IMC thickness with thermal aging temperature and time were 1.53, 1.84 and 0.81 eV, respectively.

  • PDF

A Basic Study on the Production of $Sm_{2}Fe_{17}N_{x}$ System Rare Earth Permanent Magnet by the Reduction and Diffusion(I) - Production of Alloy Powder of $Sm_{2}Fe_{17}$ Intermetallic Compound - (환원.확산법에 의한 $Sm_{2}Fe_{17}N_{x}$ 계 희토류 영구자석의 제조에 관한 기초연구(제 1보) -$Sm_{2}Fe_{17}$금속간화합물 합금분말의 제조-)

  • Song, Chang-Bin;Choo, Tong-Rae
    • Korean Journal of Materials Research
    • /
    • v.8 no.8
    • /
    • pp.720-725
    • /
    • 1998
  • As a basic study on the production of $Sm_{2}Fe_{17}N_{x}$ system rare earth permanent magnet by the reduction and diffusion(R- D) process, firstly the reduction reaction of $Sm_2O_3$ by metallic Ca and diffusion of Sm into Fe powder was investigated for the production the $Sm_{2}Fe_{17}$intermetallic compound. We concluded that the former case was very rapidly completed under the high temperature greater than 100$0^{\circ}C$ and the latter case of completion of diffusion reaction of Sm into the center of Fe powder(perfect homogenization condition) was required through 3h R- D reaction at 110$0^{\circ}C$ and identified as a rate determining step(RDS) on the whole reaction. Though $SmFe_2,SmFe_3$, and $Sm_{2}Fe_{17}$phases in the growth of phases of intermetallic compound in the Sm - Fe binary system were obseved below 100$0^{\circ}C$, but only $Sm_{2}Fe_{17}$phase was observed at lIOO$^{\circ}C$. Oxygen and Ca contents of the final sample in this work were 0.72wt% and O. 11 wt% respectively.

  • PDF

Intermetallic Compound Growth Characteristics of Cu/Ni/Au/Sn-Ag/Cu Micro-bump for 3-D IC Packages (3차원 적층 패키지를 위한 Cu/Ni/Au/Sn-Ag/Cu 미세 범프 구조의 열처리에 따른 금속간 화합물 성장 거동 분석)

  • Kim, Jun-Beom;Kim, Sung-Hyuk;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.59-64
    • /
    • 2013
  • In-situ annealing tests of Cu/Ni/Au/Sn-Ag/Cu micro-bump for 3D IC package were performed in an scanning electron microscope chamber at $135-170^{\circ}C$ in order to investigate the growth kinetics of intermetallic compound (IMC). The IMC growth behaviors of both $Cu_3Sn$ and $(Cu,Ni,Au)_6Sn_5$ follow linear relationship with the square root of the annealing time, which could be understood by the dominant diffusion mechanism. Two IMC phases with slightly different compositions, that is, $(Cu,Au^a)_6Sn_5$ and $(Cu,Au^b)_6Sn_5$ formed at Cu/solder interface after bonding and grew with increased annealing time. By the way, $Cu_3Sn$ and $(Cu,Au^b)_6Sn_5$ phases formed at the interfaces between $(Cu,Ni,Au)_6Sn_5$ and Ni/Sn, respectively, and both grew with increased annealing time. The activation energies for $Cu_3Sn$ and $(Cu,Ni,Au)_6Sn_5$ IMC growths during annealing were 0.69 and 0.84 eV, respectively, where Ni layer seems to serve as diffusion barrier for extensive Cu-Sn IMC formation which is expected to contribute to the improvement of electrical reliability of micro-bump.

A Study on the Thermal Stability of $Ll_2$$Al_3$Ti Intermetallic Compounds Fabricated by Mechanical Alloying with Mn additions (기계적 합금화 방법에 의해 제조된 $Ll_2$$Al_3$Ti금속간 화합물의 열적 안정성에 미치는 Mn의 첨가 영향에 관한 연구)

  • Choe, Jae-Ung;Park, Jong-Beom;Gang, Seong-Gun
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.393-397
    • /
    • 2001
  • Fer the purpose of improving ductility of $Al_3$Ti intermetallic compound has potential to industrial application, we investigated formation behavior of cubic Ll$_2$ structure and effect of Mn addition. Nanocrystalline cubic Ll$_2$Al$_3$Ti intermetallic compound, has 10nm size of grain, was fabricated by mechanical alloying for 20hr at the composition of Al-8Mn-25Ti. Ternary cubic Ll$_2$Al$_3$Ti, added Mn, did not showed phase transformation from Ll$_2$ to D0$_{23}$ or D0$_{22}$ unlike binary cubic Ll$_2$Al$_3$Ti and maintained Ll$_2$ structure.

  • PDF

Mechanical Aalloying Behavior of $Al_3$Hf 및 $Al_3$Ta Intermetallic Compounds by SPEX Mill and the Effect of Ternary Additions on the Formation of $Ll_2$ Phase (SPEX mill을 이용한 $Al_3$Hf 및 $Al_3$Ta 금속간화합물의 기계적합금화 거동과 $Ll_2$상형성에 미치는 제 3 원소 첨가의 영향)

  • Lee, Seong-Hun;Choe, Jong-Hyeon;Kim, Jun-Gi;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.10 no.8
    • /
    • pp.569-574
    • /
    • 2000
  • To improve the ductility of $Al_3Hf$ and $Al_3Ta$ intermetallic compounds, which are the potential temperature structural materials, the mechanical alloying behaviour and the effect of ternary additions on the $Ll_2$ phase formation were investigated. During the mechanical alloying by the SPEX mill, the $Ll_2$ $Al_3Hf$ intermetallic compound was formed after 6 hours of milling in AL-25%Hf system. In AL-25%Ta system, however, only the $D0_{22}$ $Al_3Ta$ intermetallic compound was formed until 30 hours of milling and the $Ll_2$ phase was not observed. In AL-12.5%M-25%Ta(M=Cu, Zn, Mn, Fe, Ni) systems, the additions of Cu and Zn had no effect on the $D0_{22}$ structure of the binary $Al_3Hf$ and the additions of Mn, Fe and Ni produced the amorphous phase. Therefore it was considered that these ternary additions could not overcome the energy difference between $Ll_2$ and $D0_{22}$ structures in the $Al_3Hf$ intermetallic compound. In AL-12.5%M-25%Hf(M=Cu, Zn, Mn, Fe, Ni)systems, the additions of Cu and Zn did not affect the $Ll_2$ structure of the binary $Al_3Hf$ but the additions of oMn, Fe and Ni produced the amorphous phase as they did in AL-12.5%M-25%Ta systems. Therefore, it was considered that the Ni, Mn and Fe additions promote the formation of amorphous phase in $Al_3X$ intermetallic compounds.

  • PDF