• Title/Summary/Keyword: 근사최적화

Search Result 405, Processing Time 0.03 seconds

Design Optimization for Loop Heat Pipe Using Tabu Search (Tabu Search를 이용한 Loop Heat Pipe의 최적설계에 관한 연구)

  • Park, Yong-Jin;Yun, Su-Hwan;Ku, Yo-Cheun;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.737-743
    • /
    • 2009
  • Design optimization process and results of Loop Heat Pipe(LHP) using Tabu Search have been presented in this study. An objective of optimization is to reduce a mass of the LHP with satisfying operating temperature of a Lithium Ion battery onboard an aircraft. The battery is assumed to be used as power supply of air borne high energy laser system because of its high specific energy. The analytical models are based on a steady state mathematical model and the design optimization is performed using a Meta Model and Tabu Search. As an optimization results, the Tabu search algorithm guarantees global optimum with small computation time. Due to searching by random numbers, initial value is dominant factor to search global optimum. The optimization process could reduce the mass of the LHP which express the same performance as an published LHP.

Selectivity Estimation for Timestamp Queries (시점 질의를 위한 선택율 추정)

  • Shin, Byoung-Cheol;Lee, Jong-Yun
    • Journal of KIISE:Databases
    • /
    • v.33 no.2
    • /
    • pp.214-223
    • /
    • 2006
  • Recently there is a need to store and process enormous spatial data in spatio-temporal databases. For effective query processing in spatio-temporal databases, selectivity estimation in query optimization techniques, which approximate query results when the precise answer is not necessary or early feedback is helpful, has been studied. There have been selectivity estimation techniques such as sampling-based techniques, histogram-based techniques, and wavelet-based techniques. However, existing techniques in spatio-temporal databases focused on selectivity estimation for future extent of moving objects. In this paper, we construct a new histogram, named T-Minskew, for query optimization of past spatio-temporal data. We also propose an effective selectivity estimation method using T-Minskew histogram and effective histogram maintenance technique to prevent frequent histogram reconstruction using threshold.

On-line Motion Synthesis Using Analytically Differentiable System Dynamics (분석적으로 미분 가능한 시스템 동역학을 이용한 온라인 동작 합성 기법)

  • Han, Daseong;Noh, Junyong;Shin, Joseph S.
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.133-142
    • /
    • 2019
  • In physics-based character animation, trajectory optimization has been widely adopted for automatic motion synthesis, through the prediction of an optimal sequence of future states of the character based on its system dynamics model. In general, the system dynamics model is neither in a closed form nor differentiable when it handles the contact dynamics between a character and the environment with rigid body collisions. Employing smoothed contact dynamics, researchers have suggested efficient trajectory optimization techniques based on numerical differentiation of the resulting system dynamics. However, the numerical derivative of the system dynamics model could be inaccurate unlike its analytical counterpart, which may affect the stability of trajectory optimization. In this paper, we propose a novel method to derive the closed-form derivative for the system dynamics by properly approximating the contact model. Based on the resulting derivatives of the system dynamics model, we also present a model predictive control (MPC)-based motion synthesis framework to robustly control the motion of a biped character according to on-line user input without any example motion data.

Sparse and low-rank feature selection for multi-label learning

  • Lim, Hyunki
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.7
    • /
    • pp.1-7
    • /
    • 2021
  • In this paper, we propose a feature selection technique for multi-label classification. Many existing feature selection techniques have selected features by calculating the relation between features and labels such as a mutual information scale. However, since the mutual information measure requires a joint probability, it is difficult to calculate the joint probability from an actual premise feature set. Therefore, it has the disadvantage that only a few features can be calculated and only local optimization is possible. Away from this regional optimization problem, we propose a feature selection technique that constructs a low-rank space in the entire given feature space and selects features with sparsity. To this end, we designed a regression-based objective function using Nuclear norm, and proposed an algorithm of gradient descent method to solve the optimization problem of this objective function. Based on the results of multi-label classification experiments on four data and three multi-label classification performance, the proposed methodology showed better performance than the existing feature selection technique. In addition, it was showed by experimental results that the performance change is insensitive even to the parameter value change of the proposed objective function.

A Study on Optimization Approach for the Quantification Analysis Problem Using Neural Networks (신경회로망을 이용한 수량화 문제의 최적화 응용기법 연구)

  • Lee, Dong-Myung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.206-211
    • /
    • 2006
  • The quantification analysis problem is that how the m entities that have n characteristics can be linked to p-dimension space to reflect the similarity of each entity In this paper, the optimization approach for the quantification analysis problem using neural networks is suggested, and the performance is analyzed The computation of average variation volume by mean field theory that is analytical approximated mobility of a molecule system and the annealed mean field neural network approach are applied in this paper for solving the quantification analysis problem. As a result, the suggested approach by a mean field annealing neural network can obtain more optimal solution than the eigen value analysis approach in processing costs.

3D Beamforming Techniques in Multi-Cell MISO Downlink Active Antenna Systems for Large Data Transmission (대용량 데이터 전송을 위한 다중 셀 MISO 하향 능동 안테나 시스템에서 3D 빔포밍 기법)

  • Kim, Taehoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2298-2304
    • /
    • 2015
  • In this paper, we provide a new approach which optimizes the vertical tilting angle of the base station for multi-cell multiple-input single-output (MISO) downlink active antenna systems (AAS). Instead of the conventional optimal algorithm which requires an exhaustive search, we propose simple and near optimal algorithms. First, we represent a large system approximation based vertical beamforming algorithm which is applied to the average sum rate by using the random matrix theory. Next, we suggest a signal-to-leakage-and-noise ratio (SLNR) based vertical beamforming algorithm which simplifies the optimization problem considerably. In the simulation results, we demonstrate that the performance of the proposed algorithms is near close to the exhaustive search algorithm with substantially reduced complexity.

Optimized Design of Intelligent White LED Dimming System Based on Illumination-Adaptive Algorithm (조도 적응 알고리즘 기반 지능형 White LED Dimming System의 최적화 설계)

  • Lim, Sung-Joon;Jung, Dae-Hyung;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1956-1957
    • /
    • 2011
  • 본 연구는 White LED를 이용하여 주변 밝기 변화에 빠르게 적응하는 퍼지 뉴로 Dimming Control System을 설계한다. 본 논문에서는 방사형기저함수 신경회로망(Radial Basis Function Neural Network: RBFNN)을 설계하여 실제 White LED Dimming Control System에 적용시켜 모델의 근사화 및 일반화 성능을 평가한다. 제안한 모델에서의 은닉층은 방사형기저함수를 사용하여 적합도를 구현하였고, 후반부의 연결가중치는 경사하강법을 사용한다. 이때 멤버쉽 함수의 중심점은 HCM 클러스터링 (Hard C-Means Clustering)을 적용하여 결정한다. 연결가중치는 4가지 형태의 다항식을 대입하여 출력을 평가하였다. 최종 출력의 최적화를 위하여 PSO(Particle Swarm Optimization)을 이용하여 은닉층 노드수 및 다항식 형태를 결정한다. 본 논문에서 제안한 LED Dimming Control System은 Atmega8535를 사용하여 PWM 제어 방식을 사용하고, 조도계(Cds)를 이용하여 LED의 밝기에 따른 주변의 밝기를 감지하여 조명에 적응시키는 방법을 적용하였다.

  • PDF

Design of Radial Basis Function Neural Network Driven to TYPE-2 Fuzzy Inference and Its Optimization (TYPE-2 퍼지 추론 구동형 RBF 신경 회로망 설계 및 최적화)

  • Baek, Jin-Yeol;Kim, Woong-Ki;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.247-248
    • /
    • 2008
  • 본 논문에서는 TYPE-2 퍼지 추론 기반의 RBF 뉴럴 네트워크(TYPE-2 Radial Basis Function Neural Network, T2RBFNN)를 설계하고 PSO(Particle Swarm Optimization) 알고리즘을 이용하여 모델의 파라미터를 동정한다. 제안된 모델의 은닉층은 TYPE-2 가우시안 활성 함수로 구성되며, 출력층은 Interval set 형태의 연결가중치를 갖는다. 여기에서 규칙 전반부 활성함수의 중심 선택은 C-means 클러스터링 알고리즘을 이용하고, 규칙 후반부 Interval set 형태의 연결가중치 결정에는 경사 하강법(Gradient descent method)을 이용한 오류 역전파 알고리즘을 사용하여 학습한다. 또한, 최적의 모델을 설계하기 위한 학습율 및 활성함수의 활성화 영역 결정에는 입자 군집 최적화(PSO; Particle Swarm Optimization) 알고리즘으로 동조한다. 마지막으로, 제안된 모델의 평가를 위하여 모의 데이터 집합(Synthetic dadaset)을 적용하고 근사화 및 일반화 능력에 대하여 토의한다.

  • PDF

Buffer Management Scheme for Interactive Video Streaming (실감교류를 위한 비디오 재생 버퍼 관리 방안)

  • Na, Kwang-Min;Lee, Tae-Young;Kim, Heon-Hui;Park, Kwang-Hyun;Choi, Yong-Hoon
    • Journal of KIISE
    • /
    • v.43 no.3
    • /
    • pp.327-335
    • /
    • 2016
  • In this paper, we propose a buffer management scheme suitable for interactive multimedia services. We consider a typical delay optimization environment so that receiver buffer lengths vary according to the round trip time estimation. In this environment, we propose an optimization technique for minimizing the loss of information that may occur when a reduced buffer length forces I/P/B frames in the buffer to drop. We modeled our problem as a Knapsack Problem for which we used dynamic programing in order to find an approximate solution. The proposed technique is compared with the existing buffer management techniques. Through simulation studies, we found that our approach could increase PSNR, which is important to video quality.

Multi-Channel TDM Protocol based on Traffic Locality (트래픽 편중화에 근거한 다중채널 TDM 프로토콜)

  • 백선욱;최양희;김종상
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.2
    • /
    • pp.306-321
    • /
    • 1994
  • Since TDM protocol can be easily implemented and show high throughput at heavy load, the researches on the multi-channel high-speed network based on TDM access control have been getting more attention than ever. TDM type multi-channel network, however, has disadvantages of excessive delay at light load and inadaptibility to traffic skewing. In this paper, we proposed a new multi-channel TDM structure, time slots are allocated proportional to the traffic flow pattern among the nodes. thus delay and throughput performance are improved. Design principles of TDM frame are discussed considering traffic locality and the number of available channels. Approximate analytic models for delay evaluation are developed and verified by simulations.

  • PDF