• Title/Summary/Keyword: 근단층지반 운동

Search Result 4, Processing Time 0.017 seconds

Seismic Performance of Bridge with Pile Bent Structures in Soft Ground against Near-Fault Ground Motions (연약지반에 건설된 단일형 현장타설말뚝 교량의 근단층지반운동에 대한 내진성능)

  • Sun, Chang-Ho;An, Sung-Min;Kim, Jung-Han;Kim, Ick-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.137-144
    • /
    • 2019
  • For the structures near the seismogenic fault, the evaluation of seismic performance against near-fault ground motions is important as well as for design ground motions. In this study, characteristics of seismic behaviors and seismic performance of the pile-bent bridge constructed on the thick soft soil site with various weak soil layers were analyzed. The input ground motions were synthesized by the directivity pulse parameters for intra-plate regions. The ground motion acceleration histories of each layer were obtained by one-dimensional site response analysis. Each soil layer was modeled by equivalent linear springs, and multi-support excitations with different input ground motions at each soil spring were applied for nonlinear seismic analyses. The analysis result by the near-fault ground motions and ground motions matched to design spectra were compared. In case of the near fault ground motion input, the bridge behaved within the elastic range but the location of the maximum moment occurred was different from the result of design ground motion input.

Seismic performance evaluation of circular composite columns by shaking table test (진동대 실험을 통한 원형 합성 기둥의 내진 성능 평가)

  • Shim, Chang-Su;Chung, Young-Soo;Park, Ji-Ho;Park, Chang-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.71-81
    • /
    • 2007
  • For the design of composite bridge piers, detail requirements for the reinforcements is not clear to satisfy the required seismic performance. Composite bridge piers were suggested to reduce the sectional dimensions and to enhance the ductility of the columns under earthquake loadings. In this paper, five specimens of concrete encased composite columns of 400mm diameter with single core steel were fabricated to investigate the seismic performance of the composite columns. Shaking table tests and a Pseudo-Dynamic test were carried out and structural behavior of small-scaled models considering near-fault motions was evaluated. Test parameters were the pace of the transverse reinforcement, lap splice of longitudinal reinforcement and encased steel member sections. The displacement ductility from shaking table tests was lower than that from the pseudo-dynamic test. Limited ductile design and 50% lap splice of longitudinal reinforcement reduced the displacement ductility. Steel ratio showed significant effect on the ultimate strength. Lap splice and low transverse reinforcements reduced the displacement capacity. The energy dissipation capacity of composite columns did not show significant difference according to details.

The analysis of RC bridge piers on shaking table test by using Nonlinear program (비선형 해석프로그램을 이용한 RC교각의 진동대 시험 분석)

  • Yang, Dong-Wook;Park, Young-Kwon;Lee, Yeon-Hun;Chung, Young-Soo;Lee, Dae-Hyoung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.67-68
    • /
    • 2009
  • This research aims at investigating the seismic behavior of RC bridge piers subjected to NFGM in low or moderate seismic region according to Volumetric Confinement Steel Ratio through the shaking table test unlike original way of the test. This investigation deal with the estimate with SARCF for shaking table test by the comparative analysis for the value of FFT.

  • PDF

Response Analysis of RC Bridge Pier with Various Superstructure Mass under Near-Fault Ground Motion (근단층지반운동에 대한 상부구조 질량 변화에 따른 RC 교각의 응답분석)

  • Park, Chang-Kyu;Chung, Young-Soo;Lee, Dae-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.667-673
    • /
    • 2010
  • The near fault ground motion (NFGM) is characterized by a single long period velocity pulse with large magnitude. NFGMs have been observed in recent strong earthquakes, Northridge (1994), Japan Kobe (1995), Turkey Izmit (1999), China Sichuan (2008), Haiti (2010) etc. These strong earthquakes have caused considerable damage to infrastructures because the epicenter was close to the urban area, called as NFGM. Extensive research for the far field ground motion (FFGM) have been carried out in strong seismic region, but limited research have been done for NFGM in low or moderate seismic regions because of very few records. The purpose of this research is to investigate and analyze the seismic response of reinforced concrete bridge piers subjected to near-fault ground motions. The seismic performance of six RC bridge piers depending on three confinement steel ratios and three superstructure mass was investigated on the shaking table. From these experimental results, it was confirmed that the reduction of seismic performance was observed for test specimens with lower confinement steel ratio or more deck weight. The displacement ductility of RC bridge piers in terms of the stiffness degradation is proposed based on test results the shaking table.