• Title/Summary/Keyword: 극한 변형도 감소율

Search Result 12, Processing Time 0.027 seconds

A Study on the Bond Properties of Carbon Fiber Sheets used for Strengthening Structures (구조물 보강용 탄소섬유쉬트의 부착특성에 관한 연구)

  • 황진석;김지영;백명종;박형철;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.653-658
    • /
    • 1997
  • Recently, carbon Fiber sheet (CFS) is frequently used for strengthening deteriorated concrete structures. To strengthening damaged structures, the property and characteristic of the bond between CFS and the concrete surface must be understood. The tensile test of single lap shear specimen was performed to study bond strength, bond stress distribution and stress transfer between CFS and concrete surface according to the bond length. Based on the test results, there were ultimate influence length (UIL) in which bond stress was distributed, and ultimate strain reduction ratio (USRR) by which strain was reduced linearly. Bond resisting force (BRF) was estimated by UIL and USRR, and which was compared with ultimate loads. According to the results of comparison, it was shown that ultimate bond strength could be estimated reasonablely by BRF.

  • PDF

Mechanical Characteristics of Light-weighted Soils Using Dredged Soils (준설토를 활용한 경량혼합토의 역학적 특성 연구)

  • 윤길림;김병탁
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.75-83
    • /
    • 2002
  • This paper is to investigate the mechanical characteristics of light-weighted soils (LWS) consisting of expanded polystyrene(EPS), dredged clays and cement by using both uniaxial and triaxial compression tests. The mechanical characteristics of the compressive strength of LWS are analysed with varying initial water contents of dredged clays, EPS ratio, cement ratio, and curing stress. In the triaxial compression state, it is found that the compressive strength of LWS containing EPS is independent on the effective confined stress. As the EPS ratio decreases($A_E$<2%) and cement ratio increases($A_c$>2%), the behavior characteristics of triaxial compressive strength-strain relationship is similar to that of cemented soil which decreases rapidly in compressive strength after ultimate compressive strength. For the applications of LWS to ground improvements which require the compressive strength of up to 200kPa, the optimized EPS ratio and initial water content of dredged clay are estimated to be 3~4% and 165~175%, respectively. Also, the ultimate compressive strength under both triaxial test and uniaxial compression states are almost constant for a cement ratio of up to 2% and then critical cement ratio of this LWS shall be 2%.

Stress-Strain Behavior of Clays under Repeated Loading (반복재하(反復載荷)에 의한 점성토(粘性土)의 응력변형특성(應力變形特性))

  • Cho, Jae Hong;Kang, Yea Mook;Ryu, Neung Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.2
    • /
    • pp.329-344
    • /
    • 1987
  • This paper described the behavior under repeated loading in triaxial compression test on clay. The experiment was conducted to investigate the influence of controlled various over-consolidation ratio and compaction energy, on the stress-strain behavior of clays. 1. The difference of deviator stress during repeated loading was greatly appeared at large strain. And pore water pressure was decreased at initial of unloading, but it was increased again before long. 2. The recoverable elastic strain (${{\Delta}{\varepsilon}e}$) and the slope of un-reloading were decreased with the increment of over-consolidation ratio (OCR). 3. The recoverable elastic strain (${{\Delta}{\varepsilon}e}$) was increased with the increment of strain rate but it was decreased with the increment of strain in strain rate tests. The slope of un-reloading (Eur) tends to increase with the increment of strain rate and it was decreased with the increment of strain. 4. The recoverable elastic strain was greatly increased with the increment of compaction energy and it slightly tends to decrease with the increment of strain on various compaction energy. The slope of un-reloading was not appeared markedly with increment of compaction energy but it tends to decrease with the increment of strain generally.

  • PDF

Numerical Investigation on Load Supporting Mechanism of a Pile Constructed above Underground Cavity (공동이 존재하는 암반에 시공된 말뚝기초의 하중지지 메카니즘에 관한 수치해석 연구)

  • Choi, Go-Ny;Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.1
    • /
    • pp.5-16
    • /
    • 2011
  • This paper presents the results of a three-dimensional finite element analysis on load supporting mechanism of pile constructed above underground cavity in limestone rock formation. Considering a wide range of cavity conditions, the behavior of pile was studied using the bearing capacity, rock yielding pattern, stress distribution and deformation of pile head and the cavity. The results indicate that the load transfer mechanism of pile, rock yielding pattern and the reduction of bearing capacity of pile significantly vary with the location, size and length of cavity. Based on the results, graphical solutions defining the reduction of the bearing capacity with specific cavity conditions were suggested.

Analysis of Mechanical Behavior and Fracture Toughness $K_{IC}$ on EGW Welded Joints for High Strength EH36-TMCP Ultra Thick Plate (고강도 극후판 EH36-TMCP강 EGW용접부의 역학적 거동 및 파괴인성 $K_{IC}$에 관한 해석)

  • Bang, Hee-Seon;Bang, Han-Sur;Joo, Sung-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.565-572
    • /
    • 2009
  • This work intends to establish the reliability and fracture toughness $K_{IC}$ criterion of welded joints by EGW for high strength EH36-TMCP ultra thick plate. For this, firstly thermo elasto-plastic analysis has been carried out on two pass X-groove butt joint model to clarify the thermal and mechanical behaviour(residual stress, plastic strain, magnitude of stress and their distribution and production mechanism). Moreover, to establish fracture criterion, analysis of fracture toughness $K_{IC}$ has been performed under the notch machined and residual stress with the load condition on EGW welded joints. A quantitative fracture criterion for EGW welded joints is suggested by using $K_{IC}$.

Analysis on Fracture Toughness of Ultra Heavy Thick EH36-TMCP Plate Welded Joint (조선용 극후물재 EH36-TMCP강의 파괴인성 해석)

  • Bang, Hee-Sun;Bang, Han-Sur;Joo, Sung-Min
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.93-93
    • /
    • 2009
  • 본 연구에서는 EGW, FCAW 공정 적용에 따른 고강도 극후판 EH36-TMCP강 용접부의 역학적 거동 및 파괴인성 $K_{IC}$ 을 규명하기 위해, 먼저 열분포, 열탄소성 수치해석을 통하여 용접부의 역학적 거동(용접잔류응력, 소성변형율 등의 크기, 분포, 발생기구)을 고찰하였다. 그리고 이때 얻어진 잔류응력을 초기응력으로 하여, 잔류응력과 외력의 복합하중에 대한 파괴인성 $K_{Ic}$ 특성을 해석하였다. 용접공정별 균열이 존재하는 용접부의 파괴기준을 살펴보면, EGW용접부의 경우가 FCAW용접부의 경우에 비해 균열의 성장이 다소 용이하여 $K_{IC}$ 값이 다소 낮게 나타났다. EGW용접부의 파괴인성 $K_{IC}$ 경우 중첩된 경우(복합하중)가 순수 외력만 작용하는 경우보다 파괴 인성치가 다소 감소하는 경향을 보이고, a/W가 작을 경우 중첩의 경우가 순수 외력만의 경우보다 파괴인성치 차이가 크나, a/W가 증가함에 따라 그 차이가 점차 없어지는 것으로 나타났다. 반면, FCAW용접부의 경우 균열길이가 작은 범위에서는 중첩된 경우가 순수 외력만 작용 할 경우보다 파괴 인성치가 다소 증가함을 보이지만, a/W가 증가함에 따라 순수 외력만의 작용의 경우와 중첩의 경우의 파괴인성 차이가 없는 것으로 나타났다.

  • PDF

The Corrosion Behavior of Cold-Rolled 304 Stainless Steel In Salt Spray Environments (염분분사환경에서 냉연 304 스테인레스강의 부식거동)

  • Chiang, M.F.;Young, M.C.;Huang, J.Y.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.93-98
    • /
    • 2011
  • Saline corrosion is one of the major degradation mechanisms for stainless steel type 304 (SS304) dry storage cask during the spent fuel interim storage period. Slow strain rate test (SSRT) and neutral salt spray test (NSS) were performed at $85^{\circ}C$ and $200^{\circ}C$ with 0.5 wt% sodium chloride mist sprayed on the cold-rolled SS304 specimens of different degrees of reduction in this study. The weight changes of the NSS specimens tested at $85^{\circ}C$ for 2000 hours differed greatly from those at $200^{\circ}C$. The weight loss of NSS specimens was not significant at $85^{\circ}C$ but the weight gain decreased gradually with increasing the cold-rolled reduction. The yield strength (YS) and ultimate tensile stress (UTS) values obtained from the SSRT tests for lightly cold-rolled specimens in the salt spray environment at $85^{\circ}C$ and $200^{\circ}C$ are slightly lower than in air. But for those with 20% reductions, the specimen strengths were no longer changed by the saline corrosion. The preliminary results demonstrated that the quality and performance of cold-rolled SS304 is acceptable for fabrication of dry storage casks. However, more work on the corrosion behavior of cold-rolled stainless steel in the saline atmosphere is needed to better understand its long-term performance.

Evaluation of Factors Influencing the Dynamic Characteristics of Low Hardness High Damping Rubber Bearings (저경도 고감쇠 고무받침의 동특성에 미치는 영향인자 평가)

  • Choi, Se-Woon;Lim, Hong-Joon;Cho, Hyun-Jin;Park, Kun-Nok;Oh, Ju;Jung, Hie-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.11-20
    • /
    • 2008
  • In this paper, the characteristics of low hardness high damping rubber bearings(HDRB) were studied through various prototype tests. The low hardness HDRB were tested to evaluate vertical stiffness, shear stiffness, equivalent damping ratio, various dependencies of shear properties, ultimate shear properties and other factors. The prototype test was performed according to the specifications of ISO 22762-1, and evaluated according to the specifications of ISO 22762-3. The results of the prototype test showed that shear strain and temperature were the factors that most greatly influenced shear stiffness, and that compressive stress was the factor that most greatly influenced the equivalent damping ratio. The frequency dependence test of shear properties showed that two general tendencies of frequency dependence could be observed. At frequencies over 0.1Hz, the changes in shear properties were small. However, at frequencies under 0.1Hz, the changes in shear properties rapidly decreased. The creep test and the ultimate shear test were also performed, and both of them satisfied the requirements of ISO 22762-3.

Pull-out Test of Steel Pipe Pile Reinforced with Hollow Steel Plate Shear Connectors (유공강판 전단연결재로 보강된 강관말뚝 머리의 인발실험)

  • Lee, Kyoung-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.285-291
    • /
    • 2016
  • The purpose of this study was to evaluate the structural capacity of steel pipe pile specimens reinforced with hollow steel plate shear connectors by pull-out test. Compressive strength testing of concrete was conducted and yield forces, tensile strengths and elongation ratios of re-bars and hollow steel plate were investigated. A 2,000kN capacity UTM was used for the pull-out test with 0.01mm/sec velocity by displacement control method. Strain gauges were installed at the center of re-bars and hollow steel plates and LVDTs were also installed to measure the relative displacement between the loading plate and in-filled concrete pile specimens. The yield forces of the steel pipe pile specimens reinforced with hollow steel plate shear connectors were increased 1.44-fold and 1.53-fold compared to that of a control specimen, respectively. Limited state forces of steel pipe pile specimens reinforced with hollow steel plate shear connectors were increased 1.23-fold and 1.29-fold compared to that of a control specimen, respectively. Yield state displacement and limited state displacement of steel pipe pile specimens reinforced with hollow steel plate shear connector were decreased 0.61-fold and 0.42-fold compared to that of a control specimen, respectively.

Stiffness Reduction Effect of Vertically Divided Reinforced Concrete Shear Walls Under Cyclic Loading (반복하중을 받는 수직분할된 철근콘크리트 전단벽의 강성저감효과)

  • Hwangbo, Dong-Sun;Son, Dong-Hee;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.103-110
    • /
    • 2022
  • The purpose of this study is to experimentally evaluate the stiffness and strength reduction according to the reinforcing bar details of the vertically divided reinforced concrete shear walls. To confirm the effect of reducing strength and stiffness according to vertical division, four real-scale specimens were fabricated and repeated lateral loading tests were performed. As a result of the experiment, it was confirmed that the strength and stiffness were decreased according to the vertical division. In particular, as the stiffness reduction rate is greater than the strength reduction rate, it is expected that safety against extreme strength can be secured when the load is redistributed according to vertical division. As a result of checking the crack pattern, a diagonal crack occurred in the wall subjected to compression control among the divided walls. It was confirmed that two neutral axes occurred after division, and the reversed strain distribution appeared in the upper part, showing the double curvature pattern. In future studies, it is necessary to evaluate the stiffness reduction rate considering the effective height of the wall, to evaluate additional variables such as wall aspect ratio, and to conduct analytical studies on various walls using finite element analysis.