• Title/Summary/Keyword: 그림자 매핑

Search Result 8, Processing Time 0.026 seconds

Mipmap-Based Deferred Soft Shadow Mapping (밉맵 기반의 지연된 부드러운 그림자 매핑)

  • Kim, Sunggoo;Lee, Sungkil
    • Journal of KIISE
    • /
    • v.43 no.4
    • /
    • pp.399-403
    • /
    • 2016
  • Deferred Shading is a shading technique that postprocesses pixels in the screen space, following geometry-only rendering passes with depth buffering. Unlike typical shadow mapping techniques, this technique allows us to render shadows from multiple light sources without changing the structure of the rendering pipelines. This paper presents a deferred shadow mapping technique and its extension to soft shadows using mipmapping. Our technique first generates visibility maps from light sources, and blurs the visibility maps for deferred shading. This strategy leads to efficient soft-edged shadows, but does not incorporate depth variation, producing light bleeding to some extent. In order to suppress the light-bleeding artifacts, we also propose a depth-adaptive mipmap sampling technique in the screen space.

A Shadow Mapping Technique Separating Static and Dynamic Objects in Games using Multiple Render Targets (다중 렌더 타겟을 사용하여 정적 및 동적 오브젝트를 분리한 게임용 그림자 매핑 기법)

  • Lee, Dongryul;Kim, Youngsik
    • Journal of Korea Game Society
    • /
    • v.15 no.5
    • /
    • pp.99-108
    • /
    • 2015
  • To identify the location of the object and improve the realism in 3D game, shadow mapping is widely used to compute the depth values of vertices in view of the light position. Since the depth value of the shadow map is calculated by the world coordinate, the depth values of the static object don't need to be updated. In this paper, (1) in order to improve the rendering speed, using multiple render targets the depth values of static objects stored only once are separated from those of dynamic objects stored each time. And (2) in order to improve the shadow quality in the quarter view 3D game, the position of the light is located close to dynamic objects traveled along the camera each time. The effectiveness of the proposed method is verified by the experiments according to the different static and dynamics object configuration in 3D game.

A Real-time Soft Shadow Rendering Method under the Area Lights having an Arbitrary Shape (임의의 모양을 가지는 면광원 하의 실시간 부드러운 그림자 생성 방법)

  • Chun, Youngjae;Oh, Kyoungsu
    • Journal of Korea Game Society
    • /
    • v.14 no.2
    • /
    • pp.77-84
    • /
    • 2014
  • Presence of soft shadow effects from an area light makes virtual scenes look more realistic. However, since computation of soft shadow effects takes a long time, acceleration methods are required to apply it to real-time 3D applications. Many researches assumed that area lights are white rectangles. We suggest a new method which renders soft shadows under the area light source having arbitrary shape and color. In order to approximate visibility test, we use a shadow mapping result near a pixel. Complexity of shadow near a pixel is used to determine degree of precision of our visibility estimation. Finally, our method can present more realistic soft shadows for the area light that have more general shape and color in real-time.

Real-time Soft-shadow using Shadow Atlas (그림자 아틀라스를 이용한 부드러운 그림자 생성 방법)

  • Park, Sun-Yong;Yang, Jin-Suk;Oh, Kyoung-Su
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.2
    • /
    • pp.11-16
    • /
    • 2011
  • In computer graphics, shadows play a very important role as a hint of inter-object distance as well as themselves in terms of realism. To represent shadows, some traditional methods such as shadow mapping and shadow volume have been frequently used for the purpose. However, the rendering results are not natural since they assume the point light. On the contrary, an area light can render soft-shadows, but its computation is too burdensome due to integral over the whole light source surface. Many alternatives have been introduced, back-projection of occluder onto the light source to get visibility of light or filtering of shadow boundary by calculating size of penumbra. But they also have problems of light bleeding or ringing effects because of low order approximation, or low performance. In this paper, we describe a method to improve those problems using shadow atlas.

Real-Time Shadow Generation using Image Warping (이미지 와핑을 이용한 실시간 그림자 생성 기법)

  • Kang, Byung-Kwon;Ihm, In-Sung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.5
    • /
    • pp.245-256
    • /
    • 2002
  • Shadows are important elements in producing a realistic image. Generation of exact shapes and positions of shadows is essential in rendering since it provides users with visual cues on the scene. It is also very important to be able to create soft shadows resulted from area light sources since they increase the visual realism drastically. In spite of their importance. the existing shadow generation algorithms still have some problems in producing realistic shadows in real-time. While image-based rendering techniques can often be effective1y applied to real-time shadow generation, such techniques usually demand so large memory space for storing preprocessed shadow maps. An effective compression method can help in reducing memory requirement, only at the additional decoding costs. In this paper, we propose a new image-barred shadow generation method based on image warping. With this method, it is possible to generate realistic shadows using only small sizes of pre-generated shadow maps, and is easy to extend to soft shadow generation. Our method will be efficiently used for generating realistic scenes in many real-time applications such as 3D games and virtual reality systems.

Real-time shadow creation technique for a online game (온라인 게임을 위한 실시간 음영 생성 기법)

  • Lee, Sung-Ug;Bae, Jae-Hawan
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.635-638
    • /
    • 2008
  • Online games' environments have recently changed with developments of computer technique. Various factors such as respective for realistic expression, solidity, the quality of the material, shadow, should be considered. In these factors, shadow expression plays a important role for realistic one. A lot of repeated operation should be executed to provide shadow. In other words, realm division against a lot of dots to estimate objections and the degree of brightness should be divided. This paper provides effective methods to perform realistic shadow through mapping LOD of objections as shadow without drawing data to judge the realm of shadow for shadow creation.

  • PDF

A Design of a Cellular Neural Network for the Real Image Processing (실영상처리를 위한 셀룰러 신경망 설계)

  • Kim Seung-Soo;Jeon Heung-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.283-290
    • /
    • 2006
  • The cellular neural networks have the structure that consists of an array of the same cell which is a simple processing element, and each of the cells has local connectivity and space invariant template properties. So, it has a very suitable structure for the hardware implementation. But, it is impossible to have a one-to-one mapping between the CNN hardware processors and the pixels of the practical large image. In this paper, a $5{\times}5$ CNN hardware processor with pipeline input and output that can be applied to the time-multiplexing processing scheme, which processes the large image with a small CNN cell block, is designed. the operation of the implemented $5{\times}5$ CNN hardware processor is verified from the edge detection and the shadow detection experimentations.

Real-Time Simulation of Single and Multiple Scattering of Light (빛의 단일 산란과 다중 산란의 실시간 시뮬레이션 기법)

  • Ki, Hyun-Woo;Lyu, Ji-Hye;Oh, Kyoung-Su
    • Journal of Korea Game Society
    • /
    • v.7 no.2
    • /
    • pp.21-32
    • /
    • 2007
  • It is significant to simulate scattering of light within media for realistic image synthesis; however, this requires costly computation. This paper introduces a practical image-space approximation technique for interactive subsurface scattering. We use a general two-pass approach, which creates transmitted irradiance samples onto shadow maps and computes illumination using the shadow maps. We estimate single scattering efficiently using a method similar to common shadow mapping with adaptive deterministic sampling. A hierarchical technique is applied to evaluate multiple scattering, based on a diffusion theory. We further accelerate rendering speed by tabulating complex functions and utilizing level of detail. We demonstrate that our technique produces high-quality images of animated scenes with blurred shadow at hundreds frames per second on graphics hardware. It can be integrated into existing interactive systems easily.

  • PDF