• Title/Summary/Keyword: 그린의 함수

Search Result 134, Processing Time 0.019 seconds

Analysis of added resistance of a ship advancing in waves (파랑중에서 전진하는 선박의 부가저항 해석)

  • 이호영;곽영기
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.91-99
    • /
    • 1997
  • This paper presents theoretical formulations and numerical computations for predicting first-and second-order hydrodynamic force on a ship advvancing in waves. The theoretical formulation leads to linearized radiation and diffration problems solving the three-dimensional Green function integral equations over the mean wetted body surface. Green function representing a translating and pulsating source potantial for infinite water depth is used. In order to solve integral equations for three dimentional flows using Green function efficiently, the Hoff's method is adopted for numerical calculation of the Green function. Based on the first-order solution, the mean seconder-order forces and moments are obtained by directly integrating second-order pressure over the mean wetted body surface. The calculated items are carried out for analyzing the seakeeping characteristics of Series 60. The calculated items are hydrodynamic coefficients, wave exciting forces, frequency response functions and addd resistance in waves.

  • PDF

Improved closed-form Green's function for a horizontal magnetic dipole in a parallel-plate waveguide (평행평판 도파관내 수평자기쌍극자에 대한 개선된 단순함수형태의 그린함수)

  • 이영순;권호상;조영기
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.5
    • /
    • pp.24-32
    • /
    • 1998
  • Spatial green's functions for a horizontal magnetic dipole in a parallel-plate waveguide are expressed in an improved closed-form with two-level approximation of the spectral green's functions. The results evaluated by the present closed-from green's function with two-level approximation are compard with those obtained the previous closed-form green's function with one-level approximation. The present results are observed to be more acurate than the previous results over wide frequency range as well as whole spatial range. The combination of the present closed-form green's functions and the moment mehtod may help in analyzing the problem of EMP coupling through an aperture into a parallel-plat waveguide and the microstrip slot antenna with a reflector.

  • PDF

Scattering of Surface Waves in Anisotropic Media for Applications in Wave Barriers and Non-Destructive Evaluation (방진구조물 및 비파괴 응력파 탐상의 응용을 위한 비등방성 재료의 표면파 산란에 관한 연구)

  • 이종세
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.77-85
    • /
    • 1998
  • Propagation of elastic surface waves in anisotropic media is considered in this study. An analytical technique is proposed to study the scattering of surface waves at the interface between two anisotropic quarter-spaces. The Green's function technique is used to derive a system of equations which can determine the scattering coefficients at the interface. A numerical study is carried out and the trade-offs between the material anisotropy and inhomogeneity are studied.

  • PDF

Dispersion Analysis for Rectangular Coaxial Line and TEM Cell (네모 동축선과 TEM 셀의 분산관계 해석)

  • Cho, Yong-Heui
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.124-130
    • /
    • 2007
  • A rectangular coaxial line is mainly utilized as a transition structure from a coaxial line to a rectangular waveguide. A TEM cell is also widely used to measure the EMC characteristics of a DUT. In order to understand the operations of a rectangular coaxial line and a TEM cell, it is essential to analyze the dispersion relations of a rectangular coaxial line and a TEM cell. In this paper, we present simple yet accurate dispersion relations of the TE and TM higher modes based on the TEM mode. Manipulating a mode-matching technique and a Green's function approach allows us to obtain the analytic dispersion equations of a rectangular coaxial line and a TEM cell. In our approach, a rectangular coaxial line is divided into four L-blocks and its electromagnetic fields representations are easily obtained with a superposition. To verify the convergence of our dispersion relations, we perform numerical computations and compare our results with those of FDTD.

Radiation Characteristics of Microstrip Antenna on the Superstrate-Loaded Cylindrical Bianisotropic Substrated (덮개층을 갖는 원통형 쌍이방성 기판 위의 마이크로스트립 안테나의 방사특성)

  • Yoon, Joong-Han;Lee, Sang-Mok;An, Gyoo-Chul;Kwak, Kyung-Sup
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.11
    • /
    • pp.1-11
    • /
    • 1999
  • In this paper, the effects of superstrate on the radiation patterns of dipole on cylindrical bianisotropic substrates were studied. Special constitutive relations are used to describe the bianisotropic properties of a material, such that the Green's function can be formulated. Electromagnetic fields and boundary conditions in spectral region were used to find Green's function of the spectral representation and electromagnetic fields in space region were derived through inverse Fourier transformations of fields in spectral region using asymptotic formula for far zone. Radiation characteristics of axial Hertzian dipole on superstrate loaded cylindrical bianisotropic substrates were obtained. The effects of bianisotropic superstrate on the radiation properties of the antennas including beam scanning, directivity enhancement, dark-region illumination, and on horizon radiation, are discussed.

  • PDF

IMAGING THE UPPER CRUST OF THE KOREAN PENINSULA BY SURFACE WAVE TOMOGRAPHY (표면파 토모그래피를 이용한 한반도 상부지각의 이미지)

  • Cho, Kwang-Hyun;Herrmann, Robert B.;Lee, Kie-Hwa
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.41-50
    • /
    • 2006
  • The crustal structure of Korean Peninsula have been investigated by analyzing group velocity dispersion data of surface wave. Cross.correlation of seismic background motions (Campillo and Paul, 2003; Shapiro et al., 2005) has been applied to estimate the short.period Rayleigh. and Love.wave group velocity dispersion characteristics of the region. Standard processing procedures were applied to the cross.correlation, except that signal whitening was used in place of one.bit sampling equalize power in signals from different times. Multiple.filter analysis was used to extract the group velocities from the estimate Green's functions, which were then use to image the spatially varying dispersion at periods between 0.5 and 20 seconds. The tomographic inversion technique used inverted all periods simultaneously to provide a smooth dispersion curve as a function of period in addition to the usual smooth spatial image for a given period. The Gyeongsang Basin in the southeastern part of the peninsula is clearly resolved with lower group velocities.

  • PDF

Unsteady Thermoelasic Deformation and Stress Analysis of a FGM Rectangular Plate (경사기능재료 사각 판의 비정상 열 탄생변형과 응력해석)

  • Kim, Kui-Seob
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.91-100
    • /
    • 2004
  • A Green's function approach is adopted for analyzing the thermoelastic deformations and stresses of a plate made of functionally graded materials(FGMs). The solution to the 3-dimensional unsteady temperature is obtained by using the laminate theory. The fundamental equations for thermoelastic problems are derived in terms of out-plane deformation and in-plane force, separately. The thermoelastic deformation and the stress distributions due to the bending and in-plane forces are analyzed by using a Green's function based on the Galerkin method. The eigenfunctions of the Galerkin Green's function for the thermoelastic deformation and the stress distributions are approximated in terms of a series of admissible functions that satisfy the homogeneous boundary conditions of the rectangular plate. Numerical analysis for a simply supported plate is carried out and effects of material properties on unsteady thermoclastic behaviors are discussed.

Resonant Frequency in Rectangular Microstrip Patch Antenna on Anisotropic Substrates with Airgap and Permittivity Superstrate (공기갭과 유전체 덮개층을 갖는 이방성 기판 위의 마이크로스트립 패치 안테나의 공진 주파수 해석)

  • 윤중한;이상목;곽경섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11B
    • /
    • pp.1600-1606
    • /
    • 2001
  • Resonant frequency in rectangular microstrip patch antenna on anisotropic substrates with airgap and superstrate are analyzed. Dyadic Green function is derived for selected anisotropic material by constitutive relation. From these results, integral equations of electric fields are formulated using Fourier transform in space region. The electric field integral equations are discretized into the matrix form by applying Galerkin\`s moment method. Sinusoidal functions are selected as basis functions because they resemble in the actual standing wave on the patch. To verify the validity of numerical result, we compare our result with existing one and get a good agreement between them. From the numerical results, the resonant frequency in the variation of air gap, patch length and anisotropy ratio are presented and analysed.

  • PDF

Dielectric Cover effect of Rectangular Microstrip Patch Antenna on Uniaxial Substrates with Airgap (공기 갭을 갖는 일축성 매질 위에 마이크로스트립 패치 안테나의 덮개층 영향)

  • Yoon, Joong-Han;An, Gyoo-Chul;Kwak, Kyung-Sup
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.9
    • /
    • pp.29-39
    • /
    • 2001
  • Dielectric cover effect of rectangular microstrip patch antenna on uniaxial substrates with airgap are studied. First, we derive Dyadic Green function for selected anisotropic material by constitutive relation and then formulate integral equations of electric fields using Fourier transform in space region. Using Galerkin's moment method, we discretize the electric field integral equations into the matrix form and select sinusoidal functions as basis functions. We verify the validity of numerical results and compare the results with existing ones in showing a good agreement between them. When the dielectric cover thickness is varied, the resonant frequencies and input impedances in the variation of air gap, patch length and thickness and permittivity of superstrate are presented and analyzed.

  • PDF

Spectral Domain Analysis of Resonant Frequency in Rectangular Microstrip Patch Antenna on Uniaxial Substrates with Airgap and Superstrate (공기 갭과 덮개층을 갖는 이방성 매질 위의 사각 마이크로스트립 패치 안테나 공진 주파수의 파수 영역 해석)

  • Lee, Sang-Mok;Yoon, Joong-Han;Kim, Heung-Soo
    • Journal of IKEEE
    • /
    • v.5 no.1 s.8
    • /
    • pp.91-99
    • /
    • 2001
  • Spectral domain of resonant frequency rectangular microstrip patch antenna on anisotropic substrates and superstrate with airgap are analyzed. First, we derive dyadic Green function for selected anisotropic material by constitutive relation and then formulate integral equations of electric fields using Fourier transform in space region. Using Galerkin's moment method, we discretize the electric field integral equations Into the matrix form and select sinusoidal functions as basis functions. We verify the validity of numerical results and compare the results with existing ones in showing a good agreement between them. The resonant frequencies in the variation of air gap, patch length and permittivity of superstrate anisotrpy ratio of anisotrpic superstrate are presented and analyzed.

  • PDF