• Title/Summary/Keyword: 그룹전송

Search Result 685, Processing Time 0.02 seconds

An Efficient Group Key Distribution Mechanism for the Secure Multicast Communication in Mobile Ad Hoc Networks (이동 애드혹 네트워크에서 안전한 멀티캐스트 통신을 위한 효율적인 그룹 키 분배 방식)

  • Lim Yu-Jin;Ahn Sang-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.13C no.3 s.106
    • /
    • pp.339-344
    • /
    • 2006
  • Secure delivery of multicast data can be achieved with the use of a group key for data encryption in mobile ad hoc network (MANET) applications based on the group communication. However, for the support of dynamic group membership, the group key has to be updated for each member joining/leaving and, consequently, a mechanism distributing an updated group key to members is required. The two major categories of the group key distribution mechanisms proposed for wired networks are the naive and the tree-based approaches. The naive approach is based on unicast, so it is not appropriate for large group communication environment. On the other hand, the tree-based approach is scalable in terms of the group size, but requires the reliable multicast mechanism for the group key distribution. In the sense that the reliable multicast mechanism requires a large amount of computing resources from mobile nodes, the tree-based approach is not desirable for the small-sized MANET environment. Therefore, in this paper, we propose a new key distribution protocol, called the proxy-based key management protocol (PROMPT), which is based on the naive approach in the small-sized MANET environment. PROMPT reduces the message overhead of the naive through the first-hop grouping from a source node and the last-hop grouping from proxy nodes using the characteristics of a wireless channel.

Performance of OFDM using Beam-switching and Space-Time coding in Wireless Personal Area Network (무선 개인 영역망 환경에서 빔 스위칭과 시공간부호를 적용한 OFDM 전송방식의 성능)

  • Yoon, Seok-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.85-92
    • /
    • 2010
  • In this paper, we consider the orthogonal frequency division multiplexing (OFDM) based transmission incoorperating with beam-switching and space-time coding. Specifically, we consider three configurations; (1) the beamforming technique, (2) the spatial diversity technique and (3) their combination and evaluate the performance in wireless personal area network (WPAN) environment. For the beam-forming technique, we consider the beam-switching which is performed at RF front-end with a pre-defined set of beams and for the space-time coding, we consider the Alamauti scheme with antenna selection. For the combined scheme, we divide the antennas used into two group to generate two independent beams and apply the two-antenna Alamauti scheme over the two beams. For these three configurations, performance is evaluated in terms of the SNR gain.

Explicit Multicast for Small Group Communications in Heterogeneous Mobile Networks (이종 모바일 네트워크에서의 소규모 그룹 통신을 위한 명시적 멀티캐스트)

  • Kim Wan-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.8 s.350
    • /
    • pp.15-24
    • /
    • 2006
  • We design and implement explicit mobile multicast, named XMIP, by enhancing explicit multicast for a great number of small group multicast communications. XMIP is a straightforward multicast mechanism without maintaining multicast states due to the inheritance from the explicit multicast based on a unicast routing. This research modifies and extends the functionality of each mobility agent of IETF Mobile IP for interworking XMIP XMIP Packets captured by an extended home agent are forwarded to each extended foreign agent through nested tunnels, named X-in-X tunnels, made by the binding table of the extended home agent. X-in-X tunneling mechanism can effectively solve the serious traffic concentration problems of Mobile IP multicast specifications. Finally heterogeneous mobile networks as an XMIP testbed including CDMA2000 1X EV-DO and WLAN are actually established, and a multi-user instant messenger system for small group communications is developed for verifying the feasibility of the proposed protocols.

A Node-Grouping MAC Protocol in Delay-Tolerant Underwater Acoustic Sensor Networks (지연 허용적인 수중 센서 네트워크에서 노드 그룹핑을 이용한 매체 접속 제어 프로토콜)

  • Cheon, Jin-Yong;Son, Kweon;Jang, Youn-Seon;Cho, Ho-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10B
    • /
    • pp.1200-1209
    • /
    • 2011
  • In this paper, we propose a novel energy efficient MAC protocol which is based on orthogonal frequency division multiple access (OFDMA) and exploits the physical characteristic that propagation loss of acoustic wave depends on the distance. In the proposed scheme, sensor nodes are grouped according to the distance to sink node. Then, each group uses a different frequency band. The proposed scheme not only enables all sensor nodes to maintain the signal-to-noise ratio above a certain required level (Accepted Minimum SNR, AMS), but also reduces overall transmission power consumption. In addition, the dynamic sub-channel allocation is employed in order to improve data transmission rate. Simulations show that proposed MAC protocol has better performance in a delay-tolerant underwater acoustic sensor networks.

Key Establishment Scheme for Multicast CoAP Security (멀티캐스트 CoAP 보안을 위한 키 설정 기법)

  • Cho, Jung mo;Han, Sang woo;Park, Chang seop
    • Convergence Security Journal
    • /
    • v.17 no.5
    • /
    • pp.77-85
    • /
    • 2017
  • In this paper, we propose a key establishment scheme for multicast CoAP security. For multicast CoAP applications, a CoAP Request message from a CoAP client is sent to a group of CoAP servers while each CoAP server responds with a unicast CoAP Response message. In this case, the CoAP Request message should be secured with a group key common to both the CoAP client and servers, while a pairwise key(unicast key) should be employed to secure each CoAP Response message. In the proposed protocol, the CoAP client and the CoAP server establish the group key and the pairwise key using the ECDH in the initial CoAP message exchange process. The proposed protocol, which is highly efficient and scalable, can replace DTLS Handshake and it can support end-to-end security by setting pairwise keys.

Study on Multi-party Real-Time Communication with Guaranteed QoS in Information SuperHighway (초고속 통신망에서 QoS를 보장하는 다자간 실시간 통신에 관한 연구)

  • Lim, Sun-Hwa;Kim, Moon-Hae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.11
    • /
    • pp.2943-2953
    • /
    • 1998
  • As communication networks become very fast, the scope of applications is varied and applications using multi-party communications in which more than one communication station participate, have been increased. In this paper, multicast servers are designed and implemented by two different schemes (centralized multicast server scheme and distributed multicast server scheme). Both scheme contain three operation for joining/leaving of a node, operation for transmitting the name of the group and messages to the server, and operation for a node to read messages and clear shared memory. Based on their implementations, two multicast server schemes are compared in terms of complexity, extendibility, efficiency and real-time aspects. As a result, the average transfer time of the distributed multicast server scheme is shorter than that of the centralized multicast server scheme. Finally, we designed the multi-party real-time communication method to guarantee QoS in multicast.

  • PDF

A Study on Logical Cooperative Entity-Based Multicast Architecture Supporting Heterogeneous Group Mobility in Mobile Ad Hoc Networks (Mobile Ad Hoc 네트워크에서 이질적 그룹 이동성을 지원하는 논리적 협업 개체 기반의 멀티캐스트 구조 연구)

  • Kim, Kap-Dong;Kim, Sang-Ha
    • The KIPS Transactions:PartC
    • /
    • v.14C no.2
    • /
    • pp.171-178
    • /
    • 2007
  • In mobile ad hoc networks, an application scenario requires mostly group mobility behavior in the mix of group moving nodes and individually moving nodes. The nodes of those applications tend to belong to the movement group with similar movement behavior. Group mobility is one of the good methods to improve scalability, and reduces the protocol overhead. In this paper, we propose the multicast architecture which regards nodes that have equal group mobility in the heterogeneous group mobility network as the single entity with the multiple interfaces and composes multicast tree, The logical cooperative entity-based multicast architecture accommodates the scalability, the multicast tree simplification, and the protocol overhead reduction which arc obtained from the hierarchical multicast architecture, while it maintains the nat multicast architecture for the data transmission. It also prevents the concentration of the energy consumption dispersing data forwarding load into the several ingress/egress nodes. Results obtained through simulations show that logical cooperative entity based multicast protocol with multiple interfaces offers the protocol scalability and the efficient data transmission.

A Queue Management Mechanism for Service groups based on Deep Reinforcement Learning (심층강화학습 기반 서비스 그룹별 큐 관리 메커니즘)

  • Jung, Seol-Ryung;Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1099-1104
    • /
    • 2020
  • In order to provide various types of application services based on the Internet, it is ideal to guarantee the quality of service(QoS) for each flow. However, realizing these ideas is not an easy task.. It is effective to classify multiple flows having the same or similar service quality requirements into same group, and to provide service quality for each group. The queue management mechanism in the router plays a very important role in order to efficiently transmit data and to support differentiated quality of service for each service. In order to efficiently support various multimedia services, an intelligent and adaptive queue management mechanism is required. This paper proposes an intelligent queue management mechanism based on deep reinforcement learning that decides whether to deliver packets for each group based on the traffic information of each flow group flowing in for a certain period of time and the current network state information.

Efficient Self-Healing Key Distribution Scheme (효율적인 Self-Healing키 분배 기법)

  • 홍도원;강주성;신상욱
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.6
    • /
    • pp.141-148
    • /
    • 2003
  • The self-healing key distribution scheme with revocation capability proposed by Staddon et al. enables a dynamic group of users to establish a group key over an unreliable network, and has the ability to revoke users from and add users to the group while being resistant to collusion attacks. In such a protocol, if some packet gets lost, users ale still capable of recovering the group key using the received packets without requesting additional transmission from the group manager. In this scheme, the storage overhead at each group member is O($m^2$1og p) and the broadcast message size of a group manager is O( ((m$t^2$+mt)log p), where m is the number of sessions, t is the maximum number of colluding group members, and p is a prime number that is large enough to accommodate a cryptographic key. In this paper we describe the more efficient self-healing key distribution scheme with revocation capability, which achieves the same goal with O(mlog p) storage overhead and O(($t^2$+mt)log p) communication overhead. We can reduce storage overhead at each group member and the broadcast message size of the group manager without adding additional computations at user's end and group manager's end.

Adaptive Group Separation Anti-Collision Algorithm for Efficient RFID System (효율적인 RFID 시스템을 위한 Adaptive Group Separation 충돌방지 알고리듬)

  • Lee, Hyun-Soo;Lee, Suk-Hui;Kim, Sang-Ki;Bang, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.48-55
    • /
    • 2009
  • In this paper, We propose Adaptive Group Separation algorithm for efficient RFID system AGS algorithm determines the optimized initial prefix size j, and divides the group of. A reader requests the group and searches the tag ID. If a tag collision occurred, reader adds a one bit, '0' or '1' at first bit of collision point, As a result we observe that transmitted data bits and the recognition time are decreased. The proposed algorithms have been verified by computer simulation. The performance of the proposed anti-collision algorithm is evaluated in terms of the number of repetitions and the amount of transmission bits according to the in crease of the number of tags is 256. The AGS algorithm improve the number of repetitions by about 32.3% and reduce tile amount of the transmission bits by about 1/40 than slotted binary tree algorithm.