• Title/Summary/Keyword: 그라파이트 윤활제

Search Result 5, Processing Time 0.019 seconds

A Study on Wear Properties of Solid lubricating Greaphite Materials (고체윤활 Graphite 소재의 마모 특성에 관한 연구)

  • Yang, Hoyoung;Kim, Jaehoon;Kim, Yeonwook;Ha, Jaeseok;Park, Sunghan;Lee, Hwankyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.95-100
    • /
    • 2013
  • The important design factors for designing solid lubricating of dynamic seal are tightness, wear resistance and lubricant films. In this study, the effect factors influenced solid lubricating properties of the graphite were analyzed and wear behaviour caused for various test conditions was compared with results obtained from reciprocating wear tests. Also the optimal conditions for formation of lubricant films were investigate to evaluate wear properties of graphite materials. The repeated procedure for the formation of wear particles and lubricant films, and the dissipation of lubricant films was estimated the wear mechanisms with changes of wear depth. Therefore the lubricant film of graphite seal was generated by adhesion of wear particles on the worn surface and it was very useful in wear characteristics.

Study for Frictional Characteristics of graphite lubricants in hot. warm forging (열ㆍ온간 단조에서 그라파이트 윤활제의 마찰 특성에 대한 연구)

  • ;;T.A. Dean
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.29-37
    • /
    • 2000
  • At present there are many theories as to how various lubricants used in forging perform the role of reducing friction. Little work has been carried out to determine the validity of these theories for solid lubricants. This paper covers the development and preliminary results of the experiments devised to illustrate the movement of graphite at the workpiece/tool interface in the work forging temperature range. The paper describes the results obtained from upsetting of rings between two flat dies for measurement of lubricant thickness and compaction of graphite for density-pressure relationship. These allowed the lubricant to be exposed to forging conditions and by applying the principles of Male's ring test the simple generation of a value fur friction factor could also be determined. The experiments have been undertaken to examine the behavior of lubricant for shot blasted surface and change of surface roughness. A simple computer model of the interface has been constructed characterizing the graphite layer in an attempt to simulate the boundary mechanics.

  • PDF

Sliding Wear Properties of Graphite as Sealing Materials for Cut off Hot Gas (고온차단 기밀용 그라파이트의 고온 미끄럼마모 특성 평가)

  • Kim, YeonWook;Kim, JaeHoon;Yang, HoYeong;Park, SungHan;Lee, HwanKyu;Kim, BumKeun;Lee, SeungBum;Kwak, JaeSu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1349-1354
    • /
    • 2013
  • Sealing structure to prevent flowing hot gas into the driving device, located between the driving shaft and the liner of On-Off valve for controlling the hot gas flow path was studied. Wear occurs due to the constant movement of the driving shaft controlled by actuator on graphite as the sealing material. In this paper, the dynamic wear behavior in high temperature of graphite(HK-6) to be used as sealing material was evaluated. Reciprocating wear test was carried out for the graphite(HK-6) to the relative motion between shaft materials(W-25Re). The results of friction coefficient and specific wear rate according to contact load, sliding speed at room temperature and $485^{\circ}C$ considering the actual operating environment were evaluated. Through the SEM analysis of the worn surface, third body as lubricant films were observed and lubricant effect of third body was considered.

Die Life Estimation of Hot Forging for Surface Treatment and Lubricants (표면처리 및 윤활제에 따른 열간 단조 금형의 수명 평가)

  • 이현철;김병민;김광호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.26-35
    • /
    • 2003
  • This study explains the effects of lubricant and surface treatment on hot forging die life. The mechanical and thermal load, and thermal softening which is happened by the high temperature of die, in hot and warm forging, cause die wear, heat checking and plastic deformation, etc. This study is fur the effects of solid lubricants and surface treatment condition for hot forging die. Because cooling effect and low friction are essential to the long life of dies, optimal surface treatment and lubricant are very important to improve die life for hot forging process. The main factors, which affect die hardness and heat transfer, are surface treatments and lubricants, which are related to thermal diffusion coefficient and heat transfer coefficient, etc. For verifying these effects, experiments are performed for hot ring compression test and heat transfer coefficient in various conditions as like different initial billet temperatures and different loads. The effects of lubricant and surface treatment for hot forging die life are explained by their thermal characteristics. The new developed technique in this study for predicting tool life can give more feasible means to improve the tool life in hot forging process.

Evaluation of Thermal Characteristics for Warm Forging Die due to Lubricants and Surface Treatments (윤활제와 표면처리에 따른 온간단조 금형의 열적특성 평가)

  • 김종호;김동진;정덕진;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.833-836
    • /
    • 2000
  • The mechanical and thermal load. and thermal softening which is happened by the high temperature of die, in hot and warm forging, cause wear. heat checking and plastic deformation, etc. This study is for the effects of solid lubricants and surface treatments for warm forging die Because cooling effect and low friction are essential to the long lift of dies. optimal surface treatments and lubricants are very important to hot and warm forging Process. The heat that is generated by repeated forging processes. and its transfer are important factors to affect die life. The main factors, which affect die hardness and heat transfer, are surface treatments and lubricants, which are related to thermal diffusion coefficient and heat transfer coefficient, etc. For verifying these. experiments art performed for diffusion coefficient and heat transfer coefficient in various conditions - different initial billet temperatures and different loads. Carbonitriding and ionitriding are used as surface treatments. and oil- base and water-base graphite lubrirants are used. The effects of lubricant and surface treatment for warm forging die lift are explained by their thermal characteristics.

  • PDF