• Title/Summary/Keyword: 균질화 해석

Search Result 128, Processing Time 0.029 seconds

Multiscale Scheme for Simulation of Crack Propagation in Heterogeneous Media (불균질 재료의 균열진전 해석을 위한 멀티스케일 기법)

  • Im, Se-Young;Sohn, Dong-Woo;Lim, Jae-Hyuk;Cho, Young-Sam;Kim, Jeong-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.47-50
    • /
    • 2009
  • 본 논문에서는 불균질 재료의 균열진전을 해석하기 위한 방법으로 변절점 유한요소를 이용한 멀티스케일 기법을 제시하였다. 효율적인 해석을 위하여 서로 다른 스케일의 요소망을 적용하여 전체 모델의 자유도를 감소시킨다. 균열선단과 비교적 멀리 떨어져 있는 영역은 균질화 기법을 도입하여 불균질 재료에 대한 등가물성을 갖는 성긴 요소망으로 대체하고, 균열선단 주변의 요소망은 재료의 기하학적 특성과 불균질성을 반영하도록 조밀하게 구성한다. 한편 균열선단에 존재하는 응력 특이성을 표현하기 위하여 균열선단을 포함한 요소를 더욱 조밀한 요소망으로 분할하여 구성한다. 여기에서 서로 다른 스케일의 요소망 경계에는 변절점 유한요소를 적용함으로써 경계에서의 절점 연결조건과 적합성을 만족시킬 수 있다. 제시한 멀티스케일 기법을 수치예제에 적용함으로써 정확성과 효율성을 검증하였으며, 특히 불균질 성분이 균열진전에 미치는 영향을 경계조건과 T-응력의 관점에서 분석하였다.

  • PDF

The homogenization analysis for permeability coefficients by fracture aperture variations (균질화 해석법을 이용한 단열 간극변화에 따른 투수계수 해석)

  • 채병곤
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.47-60
    • /
    • 2004
  • The permeability coefficients were calculated by the homogenization analysis method with sufficient consideration of fracture geometry dependent on aperture change. According to the results of aperture measurements using a confocal laser scanning microscope, apertures on each measuring point display different magnitudes, indicating that fracture walls can not be assumed as parallel feature. After construction of fracture model based on the aperture values measured on each pressure level, the homogenization analysis was conducted to compute permeability coefficients. The calculated permeability coefficients distribute in the ranges of $10^{-1}~10^{-3}cm/sec$. Most of the specimens show decreasing permeability coefficients with the increase of the applied pressure. However, the decreasing rates of permeability coefficients do not show a constant trend on each pressure level. This phenomenon is well matched to the observation results of Chae et al. (2003). It proves that aperture change strongly influences on permeability characteristics. Three sections of each specimen have all different values of permeability coefficient. It suggests that the variation of permeability coefficient depends sensitively on aperture magnitudes and characteristics of fracture geometry. It is very important to consider accurate fracture geometries for analysis of permeability characteristics in rock fractures bearing different aperture distribution. Therefore, it needs to consider sufficiently the fracture geometries for calculating the permeability coefficients of fractures.

Homogenization of KMRR Hafnium Control Assembly for 3-D Diffusion Calculation (3차원 중성자 확산계산을 위한 KMRR Hafnium 조정집합체 균질화에 대한 연구)

  • Park, Hang-Bok;Kim, Young-Jin;Kim, Hark-Rho;Lee, Ji-Bok
    • Nuclear Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.233-240
    • /
    • 1988
  • The hafnium shroud is used to control the excess reactivity and power distribution in KMRR. The core analysis is performed by the diffusion code VENTURE using the 5 group macroscopic cross sections homogenized for an assembly. Investigated are the applicability of the diffusion calculation by homogenized cross sections to the analysis of control assembly which features unusual geometry such that hafnium shroud surrounds a multiplying medium inside. Comparative calculation is performed for the excess reactivity and power levels by the transport code TWOTRAN. The results show the acceptability of the diffusion calculation by the homogenized cross sections without significant error.

  • PDF

An Application of Homogenization Theory to the Coarse-Mesh Nodal Calculation of PWRs (PWR 소격격자 Nodal 계산에의 균질화 이론 적용)

  • Myung Hyun Kim;Jonghwa Chang;Kap Suk Moon;Chang Kun Lee
    • Nuclear Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.202-216
    • /
    • 1984
  • The success of coarse-mesh nodal solution methods provides strong motivation for finding homogenized parameters which, when used in global nodal calculation, will reproduce exactly all average nodal reaction rates for large nodes. Two approximate theories for finding these ideal parameters, namely, simplified equivalence theory and approximate node equivalence theory, are described herein and then applied to the PWR benchmark problem. Nodal code, ANM, is used for the global calculation as well as for the homogenization calculation. From the comparative analysis, it is recommended that homogenization be carried out only for the unique type of fuel assemblies and for core boundary color-sets. The use of approximate homogenized cross-sections and approximate discontinuity factors predicts nodal powers with maximum error of 0.8% and criticality within 0.1% error relative to the fine-mesh KIDD calculations.

  • PDF

Peridynamic Modeling for Crack Propagation Analysis of Materials (페리다이나믹 이론 모델을 이용한 재료의 균열 진전 해석)

  • Chung, Won-Jun;Oterkus, Erkan;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.2
    • /
    • pp.105-114
    • /
    • 2018
  • In this paper, the computer simulations are carried out by using the peridynamic theory model with various conditions including quasi-static loads, dynamic loads and crack propagation, branching crack pattern and isotropic materials, orthotropic materials. Three examples, a plate with a hole under quasi-static loading, a plate with a pre-existing crack under dynamic loading and a lamina with a pre-existing crack under quasi-static loading are analyzed by computational simulations. In order to simulate the quasi-static load, an adaptive dynamic relaxation technique is used. In the orthotropic material analysis, a homogenization method is used considering the strain energy density ratio between the classical continuum mechanics and the peridynamic. As a result, crack propagation and branching cracks are observed successfully and the direction and initiation of the crack are also captured within the peridynamic modeling. In case of applying peridynamic used homogenization method to a relatively complicated orthotropic material, it is also verified by comparing with experimental results.

Simplified stress analysis of perforated plates using homogenization technique (균질화기법을 이용한 다공평판의 단순화된 응력해석)

  • 이진희
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.51-57
    • /
    • 1995
  • A simplified stress analysis of perforated plates was carried out using homogenization technique. Homogenization technique, which introduced miroscale expansion in the standard finite element method, reconstructed the plate with regularly placed holes into a set of macroscale and microscale models. The microscale model helped compute homogenized material constants of the unit cell, which were used to compute macroscale displacements in the macroscale model. Also it was possible to compute the stress field of the plate using the microscale model. It was found that reasonable equivalent material constants were computed and that the required degrees of freedom was drastically reduced when homogenization technique was employed in the stress analyses. The microscale modeling in the homogenization technique provided a useful concept of pre- and post-processing in the stress analysis of perforated plates.

  • PDF

Prediction of the Equivalent Elastic Properties of Fiber Reinforced Composite Materials and Structural Analysis of Composite Satellite Panel (섬유강화 복합재료 등가탄성계수 예측과 복합재료 위성패널의 구조해석)

  • You, Won-Young;Lim, Jae Hyuk;Sohn, Dongwoo;Kim, Sun-Won;Kim, Sung-Hoon
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.48-56
    • /
    • 2013
  • In this paper, the equivalent elastic properties of fiber reinforced plastic laminar are investigated using various homogenization schemes. Although there are several methods for predicting the equivalent elastic properties such as analytical formula or semi-empirical formula, most of them have some limitations or are not much accurate when handling new composite material consisting of various fiber, matrix and fiber-volume fraction ratio. To resolve the issues, computational homogenization scheme is adopted with a representative volume element (RVE) comprised of a set of finite elements. Finally, the equivalent elastic properties are obtained by applying periodic boundary conditions. The obtained results are compared with those by the existing methods and test results. Also its effect on structural analysis results of the composite satellite panel is investigated.

Finite Element Analysis and Validation for Dimpled Tube Type Intercooler Using Homogenization Method (균질화 기법을 이용한 딤플 튜브형 인터쿨러의 유한요소해석 및 검증)

  • Lee, Hyun-Min;Heo, Seong-Chan;Song, Woo-Jin;Ku, Tae-Wan;Kang, Beom-Soo;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.153-161
    • /
    • 2009
  • Three-dimensional finite-element methods(FEM) have been used to analyze the thermal stress of an exhaust gas recirculation(EGR) cooler due to thermal and pressure load. Since efficiency and capability of the heat exchanger are mainly dependent on net heat transferring area of the EGR cooler system, the tube inside the system has a numerous dimples on the surface. Thus for finite element analysis, firstly the dimple-typed tube is modeled as a plain element without the dimple, and then the equivalent thermal conductivities and elastic modulus are calculated. This work describes the numerical homogenization procedure of the dimple-typed tube and verifies the equivalent material properties by comparison of a single unit and the actual full model. Finally, the homogenization scheme presented in this study can be efficiently applied to finite element analyses for the thermal stress and deformation behavior of the EGR cooler system with the dimple-typed tube.

Comparison of Homogenization Techniques in Magnetostatic Field Problems (정자장 문제의 균질화 기법의 비교)

  • Choi, Jae-Seok;Yoo, Jeong-Hoon;Nishiwaki, Shinji;Terada, Kenjiro
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.388-394
    • /
    • 2007
  • Many engineering problems require the calculation of effective material properties of a structure which is composed of repeated micro-structures. The homogenization method has been used to calculate the effective (homogenized) properties of composites and several homogenization procedures for different physical fields have been introduced. This research describes the modified homogenization technique for magnetostatic problems. Assuming that the material is periodically repeated, its effective permeability can be prescribed by calculating the homogenized magnetic reluctivity using the finite element analysis of the micro unit cell. Validity of the suggested method is confirmed by comparing the results by the energy based method as well as the widely known homogenization method.

Homogenization of Plastic Behavior of Metallic Particle/Epoxy Composite Adhesive for Cold Spray Deposition (저온 분사 공정을 위한 금속입자/에폭시 복합재료 접착제의 소성 거동의 균질화 기법 연구)

  • Yong-Jun Cho;Jae-An Jeon;Kinal Kim;Po-Lun Feng;Steven Nutt;Sang-Eui Lee
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.199-204
    • /
    • 2023
  • A combination of a metallic mesh and an adhesive layer of metallic particle/epoxy composite was introduced as an intermediate layer to enhance the adhesion between cold-sprayed particles and fiber-reinforced composites (FRCs). Aluminum was considered for both the metallic particles in the adhesive and the metallic mesh. To predict the mechanical characteristics of the intermediate bond layer under a high strain rate, the properties of the adhesive layer needed to be calculated or measured. Therefore, in this study, the Al particle/epoxy adhesive was homogenized by using a rule of mixture. To verify the homogenization, the penetration depth, and the thickness decrease after the cold spray deposition from the undeformed surface, was monitored with FE analysis and compared with experimental observation. The comparison displayed that the penetration depth was comparable to the diameters of one cold spray particle, and thus the homogenization approach can be reasonable for the prediction of the stress level of particulate polymer composite interlayer under a high strain rate for cold spray processing.